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4 Prologue: A machine learning sampler

There are a number of useful ways in which we can express the SpamAssassin

classifier in mathematical notation. If we denote the result of the i -th test for

a given e-mail as xi , where xi = 1 if the test succeeds and 0 otherwise, and we

denote the weight of the i -th test as wi , then the total score of an e-mail can be

expressed as
Pn

i=1 wi xi , making use of the fact that wi contributes to the sum

only if xi = 1, i.e., if the test succeeds for the e-mail. Using t for the threshold

above which an e-mail is classified as spam (5 in our example), the ‘decision rule’

can be written as
Pn

i=1 wi xi > t .

Notice that the left-hand side of this inequality is linear in the xi variables, which

essentially means that increasing one of the xi by a certain amount, say ±, will

change the sum by an amount (wi±) that is independent of the value of xi . This

wouldn’t be true if xi appeared squared in the sum, or with any exponent other

than 1.

The notation can be simplified by means of linear algebra, writing w for the vec-

tor of weights (w1, . . . , wn) and x for the vector of test results (x1, . . . , xn). The

above inequality can then be written using a dot product: w ·x > t . Changing the

inequality to an equality w ·x = t , we obtain the ‘decision boundary’, separating

spam from ham. The decision boundary is a plane (a ‘straight’ surface) in the

space spanned by the xi variables because of the linearity of the left-hand side.

The vector w is perpendicular to this plane and points in the direction of spam.

Figure 1 visualises this for two variables.

It is sometimes convenient to simplify notation further by introducing an ex-

tra constant ‘variable’ x0 = 1, the weight of which is fixed to w0 = °t . The ex-

tended data point is then x± = (1, x1, . . . , xn) and the extended weight vector is

w± = (°t , w1, . . . , wn), leading to the decision rule w± · x± > 0 and the decision

boundary w± · x± = 0. Thanks to these so-called homogeneous coordinates the

decision boundary passes through the origin of the extended coordinate system,

at the expense of needing an additional dimension (but note that this doesn’t re-

ally affect the data, as all data points and the ‘real’ decision boundary live in the

plane x0 = 1).

Background 1. SpamAssassin in mathematical notation. In boxes such as these, I will

briefly remind you of useful concepts and notation. If some of these are unfamiliar, you

will need to spend some time reviewing them – using other books or online resources such

as www.wikipedia.org or mathworld.wolfram.com – to fully appreciate the rest

of the book.

www.wikipedia.org
mathworld.wolfram.com
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Probabilities involve ‘random variables’ that describe outcomes of ‘events’. These events

are often hypothetical and therefore probabilities have to be estimated. For example, con-

sider the statement ‘42% of the UK population approves of the current Prime Minister’.

The only way to know this for certain is to ask everyone in the UK, which is of course

unfeasible. Instead, a (hopefully representative) sample is queried, and a more correct

statement would then be ‘42% of a sample drawn from the UK population approves of the

current Prime Minister’, or ‘the proportion of the UK population approving of the current

Prime Minister is estimated at 42%’. Notice that these statements are formulated in terms

of proportions or ‘relative frequencies’; a corresponding statement expressed in terms of

probabilities would be ‘the probability that a person uniformly drawn from the UK popu-

lation approves of the current Prime Minister is estimated at 0.42’. The event here is ‘this

random person approves of the PM’.

The ‘conditional probability’ P (A|B) is the probability of event A happening given that

event B happened. For instance, the approval rate of the Prime Minister may differ for

men and women. Writing P (PM) for the probability that a random person approves of the

Prime Minister and P (PM|woman) for the probability that a random woman approves of

the Prime Minister, we then have that P (PM|woman) = P (PM,woman)/P (woman), where

P (PM,woman) is the probability of the ‘joint event’ that a random person both approves

of the PM and is a woman, and P (woman) is the probability that a random person is a

woman (i.e., the proportion of women in the UK population).

Other useful equations include P (A,B) = P (A|B)P (B) = P (B |A)P (A) and P (A|B) =
P (B |A)P (A)/P (B). The latter is known as ‘Bayes’ rule’ and will play an impor-

tant role in this book. Notice that many of these equations can be extended to

more than two random variables, e.g. the ‘chain rule of probability’: P (A,B ,C ,D) =
P (A|B ,C ,D)P (B |C ,D)P (C |D)P (D).

Two events A and B are independent if P (A|B) = P (A), i.e., if knowing that B happened

doesn’t change the probability of A happening. An equivalent formulation is P (A,B) =
P (A)P (B). In general, multiplying probabilities involves the assumption that the corre-

sponding events are independent.

The ‘odds’ of an event is the ratio of the probability that the event happens and the proba-

bility that it doesn’t happen. That is, if the probability of a particular event happening is p,

then the corresponding odds are o = p/(1°p). Conversely, we have that p = o/(o +1). So,

for example, a probability of 0.8 corresponds to odds of 4:1, the opposite odds of 1:4 give

probability 0.2, and if the event is as likely to occur as not then the probability is 0.5 and

the odds are 1:1. While we will most often use the probability scale, odds are sometimes

more convenient because they are expressed on a multiplicative scale.

Background 2. The basics of probability.
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Long before machine learning came into existence, philosophers knew that gen-

eralising from particular cases to general rules is not a well-posed problem with

well-defined solutions. Such inference by generalisation is called induction and

is to be contrasted with deduction, which is the kind of reasoning that applies to

problems with well-defined correct solutions. There are many versions of this so-

called problem of induction. One version is due to the eighteenth-century Scot-

tish philosopher David Hume, who claimed that the only justification for induc-

tion is itself inductive: since it appears to work for certain inductive problems, it

is expected to work for all inductive problems. This doesn’t just say that induc-

tion cannot be deductively justified but that its justification is circular, which is

much worse.

A related problem is stated by the no free lunch theorem, which states that no

learning algorithm can outperform another when evaluated over all possible

classification problems, and thus the performance of any learning algorithm,

over the set of all possible learning problems, is no better than random guess-

ing. Consider, for example, the ‘guess the next number’ questions popular in

psychological tests: what comes after 1, 2, 4, 8, ...? If all number sequences are

equally likely, then there is no hope that we can improve – on average – on ran-

dom guessing (I personally always answer ‘42’ to such questions). Of course,

some sequences are very much more likely than others, at least in the world of

psychological tests. Likewise, the distribution of learning problems in the real

world is highly non-uniform. The way to escape the curse of the no free lunch

theorem is to find out more about this distribution and exploit this knowledge in

our choice of learning algorithm.

Background 1.1. Problems of induction and free lunches.

1.2 Models: the output of machine learning

Models form the central concept in machine learning as they are what is being learned

from the data, in order to solve a given task. There is a considerable – not to say be-

wildering – range of machine learning models to choose from. One reason for this is

the ubiquity of the tasks that machine learning aims to solve: classification, regres-

sion, clustering, association discovery, to name but a few. Examples of each of these

tasks can be found in virtually every branch of science and engineering. Mathemati-

cians, engineers, psychologists, computer scientists and many others have discovered

– and sometimes rediscovered – ways to solve these tasks. They have all brought their
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Transformations in d-dimensional Cartesian coordinate systems can be conve-

niently represented by means of matrix notation. Let x be a d-vector represent-

ing a data point, then x+ t is the resulting point after translating over t (another

d-vector). Translating a set of points over t can be equivalently understood as

translating the origin over °t. Using homogeneous coordinates – the addition of

an extra dimension set to 1 – translations can be expressed by matrix multiplica-

tion: e.g., in two dimensions we have

x± =

0

B@
1

x1

x2

1

CA T =

0

B@
1 0 0

t1 1 0

t2 0 1

1

CA Tx± =

0

B@
1

x1 + t1

x2 + t2

1

CA

A rotation is defined by any d-by-d matrix D whose transpose is its inverse (which

means it is orthogonal) and whose determinant is 1. In two dimensions a rotation

matrix can be written as R =
√

cosµ sinµ

°sinµ cosµ

!

, representing a clockwise rotation

over angle µ about the origin. For instance,

√
0 1

°1 0

!

is a 90 degrees clockwise

rotation.

A scaling is defined by a diagonal matrix; in two dimensions S =
√

s1 0

0 s2

!

. A

uniform scaling applies the same scaling factor s in all dimensions and can be

written as sI, where I is the identity matrix. Notice that a uniform scaling with

scaling factor °1 is a rotation (over 180 degrees in the two-dimensional case).

A common scenario which utilises all these transformations is the following.

Given an n-by-d matrix X representing n data points in d-dimensional space,

we first calculate the centre of mass or mean vector µ by averaging each column.

We then zero-centre the data set by subtracting °µ from each row, which corre-

sponds to a translation. Next, we rotate the data such that as much variance (a

measure of the data’s ‘spread’ in a certain direction) as possible is aligned with

our coordinate axes; this can be achieved by a matrix transformation known as

tprincipal component analysis, about which you will learn more in Chapter 10.

Finally, we scale the data to unit variance along each coordinate.

Background 1.2. Linear transformations.

rather than being derived from a global model built from the entire data set.

There is a nice relationship between Euclidean distance and the mean of a set of
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Random variables describe possible outcomes of a random process. They can be either

discrete (e.g., the possible outcomes of rolling a die are {1,2,3,4,5,6}) or continuous (e.g.,

the possible outcomes of measuring somebody’s weight in kilograms). Random variables

do not need to range over integer or real numbers, but it does make the mathematics quite

a bit simpler so that is what we assume here.

If X is a discrete random variable with probability distribution P (X ) then the expected

value of X is E [X ] = P
x xP (x). For instance, the expected value of tossing a fair die is

1 · 1
6 +2 · 1

6 + . . .+6 · 1
6 = 3.5. Notice that this is not actually a possible outcome. For a con-

tinuous random variable we need to replace the sum with an integral, and the probability

distribution with a probability density function: E [X ] =
R+1
°1 xp(x)d x. The idea of this

rather abstract concept is that if we take a sample x1, . . . , xn of outcomes of the random

process, the expected value is what we expect the sample mean x = 1
n

Pn
i=1 xi to be – this

is the celebrated law of large numbers first proved by Jacob Bernoulli in 1713. For this rea-

son the expected value is often called the population mean, but it is important to realise

that the latter is a theoretical value, while the sample mean is an empirical estimate of that

theoretical value.

The expectation operator can be applied to functions of random variables. For instance,

the (population)variance of a discrete random variable is defined as E
£
(X °E [X ])2§

=
P

x (x ° E [X ])2P (x) – this measures the spread of the distribution around the expected

value. Notice that

E
h

(X °E [X ])2
i
=

X

x
(x °E [X ])2P (x) = E

h
X 2

i
°E [X ]2

We can similarly define the sample variance asæ2 = 1
n

Pn
i=1(xi °x)2, which decomposes as

1
n

Pn
i=1 x2

i °x2. You will sometimes see the sample variance defined as 1
n°1

Pn
i=1(xi °x)2:

dividing by n ° 1 rather than n results in a slightly larger estimate, which compensates

for the fact that we are calculating the spread around the sample mean rather than the

population mean.

The (population) covariance between two discrete random variables X and Y is defined

as E [(X °E [X ])(Y °E [Y ])] = E [X ·Y ]° E [X ] · E [Y ] The variance of X is a special case of

this, with Y = X . Unlike the variance, the covariance can be positive as well as neg-

ative. Positive covariance means that both variables tend to increase or decrease to-

gether; negative covariance means that if one variable increases, the other tends to de-

crease. If we have a sample of pairs of values of X and Y , sample covariance is defined as
1
n

Pn
i=1(xi ° x)(yi ° y) = 1

n
Pn

i=1 xi yi ° x y . By dividing the covariance between X and Y

by
q
æ2

Xæ
2
Y we obtain the correlation coefficient, which is a number between °1 and +1.

Background 1.3. Expectations and estimators.
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are indicative of ham, whereas e-mails with both terms are indicative of spam. Put

differently, within the spam class these features are positively correlated, while within

the ham class they are negatively correlated. In such a case, ignoring these interactions

will be detrimental for classification performance. In other cases, feature correlations

may obscure the true model – we shall see examples of this later in the book. On the

other hand, feature correlation sometimes helps us to zoom in on the relevant part of

the instance space.

There are other ways in which features can be related. Consider the following three

features that can be true or false of a molecular compound:

1. it has a carbon in a six-membered aromatic ring;

2. it has a carbon with a partial charge of °0.13;

3. it has a carbon in a six-membered aromatic ring with a partial charge of °0.13.

We say that the third feature is more specific (or less general) than the other two, be-

cause if the third feature is true, then so are the first and the second. However, the

converse does not hold: if both first and second feature are true, the third feature may

still be false (because the carbon in the six-membered ring may not be the same as the

one with a partial charge of °0.13). We can exploit these relationships when searching

for features to add to our logical model. For instance, if we find that the third feature is

true of a particular negative example that we’re trying to exclude, then there is no point

in considering the more general first and second features, because they will not help

us in excluding the negative either. Similarly, if we find that the first feature is false of

a particular positive we’re trying to include, there is no point in considering the more

specific third feature instead. In other words, these relationships help us to structure

our search for predictive features.

1.4 Summary and outlook

My goal in this chapter has been to take you on a tour to admire the machine learning

landscape, and to raise your interest sufficiently to want to read the rest of the book.

Here is a summary of the things we have been looking at.

t Machine learning is about using the right features to build the right models that

achieve the right tasks. These tasks include: binary and multi-class classifica-

tion, regression, clustering and descriptive modelling. Models for the first few of

these tasks are learned in a supervised fashion requiring labelled training data.

For instance, if you want to train a spam filter using machine learning, you need

a training set of e-mails labelled spam and ham. If you want to know how good

the model is you also need labelled test data that is distinct from the training
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data, as evaluating your model on the data it was trained on will paint too rosy a

picture: a test set is needed to expose any overfitting that occurs.

t Unsupervised learning, on the other hand, works with unlabelled data and so

there is no test data as such. For instance, to evaluate a particular partition of

data into clusters, one can calculate the average distance from the cluster cen-

tre. Other forms of unsupervised learning include learning associations (things

that tend to occur together) and identifying hidden variables such as film gen-

res. Overfitting is also a concern in unsupervised learning: for instance, assign-

ing each data point its own cluster will reduce the average distance to the cluster

centre to zero, yet is clearly not very useful.

t On the output side we can distinguish between predictive models whose out-

puts involve the target variable and descriptive models which identify interesting

structure in the data. Often, predictive models are learned in a supervised set-

ting while descriptive models are obtained by unsupervised learning methods,

but there are also examples of supervised learning of descriptive models (e.g.,

subgroup discovery which aims at identifying regions with an unusual class dis-

tribution) and unsupervised learning of predictive models (e.g., predictive clus-

tering where the identified clusters are interpreted as classes).

t We have loosely divided machine learning models into geometric models, prob-

abilistic models and logical models. Geometric models are constructed in Carte-

sian instance spaces, using geometric concepts such as planes and distances.

The prototypical geometric model is the basic linear classifier, which constructs

a decision plane orthogonal to the line connecting the positive and negative cen-

tres of mass. Probabilistic models view learning as a process of reducing uncer-

tainty using data. For instance, a Bayesian classifier models the posterior dis-

tribution P (Y |X ) (or its counterpart, the likelihood function P (X |Y )) which tells

me the class distribution Y after observing the feature values X . Logical models

are the most ‘declarative’ of the three, employing if–then rules built from logical

conditions to single out homogeneous areas in instance space.

t We have also introduced a distinction between grouping and grading models.

Grouping models divide the instance space into segments which are determined

at training time, and hence have a finite resolution. On each segment, grouping

models usually fit a very simple kind of model, such as ‘always predict this class’.

Grading models fit a more global model, graded by the location of an instance in

instance space (typically, but not always, a Cartesian space). Logical models are

typical examples of grouping models, while geometric models tend to be grad-

ing in nature, although this distinction isn’t clear-cut. While this sounds very
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abstract at the moment, the distinction will become much clearer when we dis-

cuss coverage curves in the next chapter.

t Last but not least, we have discussed the role of features in machine learning.

No model can exist without features, and sometimes a single feature is enough

to build a model. Data doesn’t always come with ready-made features, and of-

ten we have to transform or even construct features. Because of this, machine

learning is often an iterative process: we only know we have captured the right

features after we have constructed the model, and if the model doesn’t perform

satisfactorily we need to analyse its performance to understand in what way the

features need to be improved.

What you’ll find in the rest of the book

In the next nine chapters, we will follow the structure laid out above, and look in detail

at

t machine learning tasks in Chapters 2 and 3;

t logical models: concept learning in Chapter 4, tree models in Chapter 5 and rule

models in Chapter 6;

t geometric models: linear models in Chapter 7 and distance-based models in

Chapter 8;

t probabilistic models in Chapter 9; and

t features in Chapter 10.

Chapter 11 is devoted to techniques for training ‘ensembles’ of models that have cer-

tain advantages over single models. In Chapter 12 we will consider a number of meth-

ods for what machine learners call ‘experiments’, which involve training and evaluating

models on real data. Finally, in the Epilogue we will wrap up the book and take a look

ahead.

o
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We briefly review some important concepts from discrete mathematics. A set is a collec-

tion of objects, usually of the same kind (e.g., the set of all natural numbersN or the set of

real numbers R). We write x 2 A if x is an element of set A, and A µ B if all elements of A

are also elements of B (this includes the possibility that A and B are the same set, which

is equivalent to A µ B and B µ A). The intersection and union of two sets are defined as

A \B = {x|x 2 A and x 2 B} and A [B = {x|x 2 A or x 2 B}. The difference of two sets is

defined as A \ B = {x|x 2 A and x 62 B}. It is customary to fix a universe of discourse U such

that all sets under consideration are subsets of U . The complement of a set A is defined as

A =U \ A. Two sets are disjoint if their intersection is empty: A \B = ;. The cardinality

of a set A is its number of elements and is denoted |A|. The powerset of a set A is the set

of all its subsets 2A = {B |B µ A}; its cardinality is |2A | = 2|A|. The characteristic function of

a set A is the function f : U ! {true, false} such that f (x) = true if x 2 A and f (x) = false if

x 2U \ A.

If A and B are sets, the Cartesian product A£B is the set of all pairs {(x, y)|x 2 A and y 2 B};

this generalises to products of more than two sets. A (binary) relation is a set of pairs

R µ A£B for some sets A and B ; if A = B we say the relation is over A. Instead of (x, y) 2 R

we also write xR y . A relation over A is (i) reflexive if xRx for all x 2 A; (ii) symmetric if xR y

implies yRx for all x, y 2 A; (iii) antisymmetric if xR y and yRx implies x = y for all x, y 2 A;

(iv) transitive if xR y and yRz implies xRz for all x, y, z 2 A. (v) total if xR y or yRx for all

x, y 2 A.

A partial order is a binary relation that is reflexive, antisymmetric and transitive. For in-

stance, the subset relation µ is a partial order. A total order is a binary relation that is

total (hence reflexive), antisymmetric and transitive. The ∑ relation on real numbers is

a total order. If xR y or yRx we say that x and y are comparable; otherwise they are in-

comparable. An equivalence relation is a binary relation ¥ that is reflexive, symmetric

and transitive. The equivalence class of x is [x] = {y |x ¥ y}. For example, the binary re-

lation ‘contains the same number of elements as’ over any set is an equivalence relation.

Any two equivalence classes are disjoint, and the union of all equivalence classes is the

whole set – in other words, the set of all equivalence classes forms a partition of the set.

If A1, . . . , An is a partition of a set A, i.e. A1 [ . . .[ An = A and Ai \ A j =; for all i 6= j , we

write A = A1 ] . . .] An .

To illustrate this, let T be a feature tree, and define a relation ªT µX £X such that x ªT x0

if and only if x and x0 are assigned to the same leaf of feature tree T , then ªT is an equiv-

alence relation, and its equivalence classes are precisely the instance space segments as-

sociated with T .

Background 2.1. Useful concepts from discrete mathematics.

The sections in this chapter are devoted to the first three scenarios in Table 2.1:
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2.4 Binary classification and related tasks: Summary and fur-

ther reading

In this chapter we have looked at binary classification, a ubiquitous task that forms the

starting point of a lot of work in machine learning. Although we haven’t talked much

about learning in this chapter, my philosophy is that you will reach a better under-

standing of machine learning models and algorithms if you first study the tasks that

these models are meant to address.

t In Section 2.1 we defined the binary classification task and introduced an impor-

tant tool to assess performance at such a task, namely the two-by-two contin-

gency table. A wide range of performance indicators are derived from the counts

in a contingency table. I introduced the coverage plot, which visualises a con-

tingency table as a rectangle with size Pos up and size Neg across, and within

that rectangle a point with y-coordinate TP and x-coordinate FP. We can visu-

alise several models evaluated on the same data set by several points, and use

the fact that accuracy is constant along line segments with slope 1 to visually

rank these classifiers on accuracy. Alternatively, we can normalise the rectangle

to be a unit square with true and false positive rate on the axes. In this so-called

ROC space, line segments with slope 1 (i.e., those parallel to the ascending diag-

onal) connect points with the same average recall (sometimes also called macro-

accuracy). The use of these kinds of plot in machine learning was pioneered by

Provost and Fawcett (2001). Unnormalised coverage plots were introduced by

Fürnkranz and Flach (2003).

t Section 2.2 considered the more general task of calculating a score for each ex-

ample (or a vector of scores in the general case of more than two classes). While

the scale on which scores are expressed is unspecified, it is customary to put the

decision threshold at ŝ(x) = 0 and let the sign of the score stand for the predic-

tion (positive or negative). Multiplying the score with the true class gives us the

margin, which is positive for a correct prediction and negative for an incorrect

one. A loss function determines how much negative margins are penalised and

positive margins rewarded. The advantage of working with convex and continu-

ously differentiable ‘surrogate’ loss functions (rather than with 0–1 loss, which is

the loss function we ultimately want to optimise) is that this often leads to more

tractable optimisation problems.

t Alternatively, we can ignore the scale on which scores are measured altogether

and only work with their order. Such a ranker is visualised in coverage or ROC

space by a piecewise continuous curve. For grouping models the line segments

in these curves correspond to instance space segments (e.g., the leaves of a tree
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model) whereas for grading models there is a segment for each unique score as-

signed by the model. The area under the ROC curve gives the ranking accuracy

(an estimate of the probability that a random positive is ranked before a ran-

dom negative) and is known in statistics as the Wilcoxon-Mann-Whitney statis-

tic These curves can be used to find a suitable operating point by translating

the operating condition (class and cost distribution) into an isometric in ROC or

coverage space. The origins of ROC curves are in signal detection theory (Egan,

1975); accessible introductions can be found in (Fawcett, 2006; Flach, 2010b).

t In Section 2.3 we looked at scoring models whose scores can be interpreted as

estimates of the probability that the instance belongs to a particular class. Such

models were pioneered in forecasting theory by Brier (1950) and Murphy and

Winkler (1984), among others. We can assess the quality of class probability es-

timates by comparing them to the ‘ideal’ probabilities (1 for a positive, 0 for a

negative) and taking mean squared error. Since there is no reason why the true

probabilities should be categorical this is quite a crude assessment, and decom-

posing it into calibration loss and refinement loss provides useful additional in-

formation. We have also seen a very useful trick for smoothing relative frequency

estimates of probabilities by adding pseudo-counts, either uniformly distributed

(Laplace correction) or according to a chosen prior (m-estimate). Finally, we

have seen how we can use the ROC convex hull to obtain calibrated class prob-

ability estimates. The approach has its roots in isotonic regression (Best and

Chakravarti, 1990) and was introduced to the machine learning community by

Zadrozny and Elkan (2002). Fawcett and Niculescu-Mizil (2007) and Flach and

Matsubara (2007) show that the approach is equivalent to calibration by means

of the ROC convex hull. (Note that in this chapter we have seen two different uses

of the term ‘convex’: one in relation to loss functions, where convexity means

that linear interpolation between any two points on the curve depicting the loss

function will never result in a point below the curve; and the other in relation to

the ROC convex hull, where it refers to the linearly interpolated boundary of a

convex set which envelopes all points in the set.)

o
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involving petrol, such as {newspaper,petrol}. This might suggest the construc-

tion of an association rule ·if newspaper then petrol· – however, this is predictable

given that {petrol} is already a frequent item set (and clearly at least as fre-

quent as {newspaper,petrol}). Of more interest would be the converse rule

·if petrol then newspaper· which expresses that a considerable proportion of the

people buying petrol also buy a newspaper.

We clearly see a relationship with subgroup discovery in that association rules also

identify subsets that have a different distribution when compared with the full data

set, namely with respect to the then-part of the rule. The difference is that the then-

part is not a fixed target variable but it is found as part of the discovery process. Both

subgroup discovery and association rule discovery will be discussed in the context of

rule learning in Section 6.3.

3.4 Beyond binary classification: Summary and further reading

While binary classification is an important task in machine learning, there are many

other relevant tasks and in this chapter we looked at a number of them.

t In Section 3.1 we considered classification tasks with more than two classes. We

shall see in the coming chapters that some models handle this situation very

naturally, but if our models are essentially two-class (such as linear models) we

have to approach it via a combination of binary classification tasks. One key idea

is the use of a code matrix to combine the results of several binary classifiers,

as proposed by Dietterich and Bakiri (1995) under the name ‘error-correcting

output codes’ and developed by Allwein et al. (2000). We also looked at ways

to obtain scores for more than two classes and to evaluate those scores using

multi-class adaptations of the area under the ROC curve. One of these multi-

class extensions of AUC was proposed and analysed by Hand and Till (2001). The

heuristic procedure for reweighting multi-class scores in Example 3.6 on p.89

was proposed by Lachiche and Flach (2003); Bourke et al. (2008) demonstrated

that it achieves good performance in comparison with a number of alternative

approaches.

t Section 3.2 was devoted to regression: predicting a real-valued target value. This

is a classical data analysis problem that was already studied by Carl Friedrich

Gauss in the late eighteenth century. It is natural to use a quadratic loss func-

tion on the residuals, although this carries with it a certain sensitivity to out-

liers. Grading models are most common here, although it is also possible to
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learn a grouping model that divides the instance space into segments that admit

a simple local model. Since it is often possible to fit a set of points exactly (e.g.,

with a high-degree polynomial), care must be taken to avoid overfitting. Finding

the right balance between over- and underfitting is sometimes called the bias–

variance dilemma; an extensive discussion (including the dartboard metaphor)

can be found in Rajnarayan and Wolpert (2010).

t In Section 3.3 we considered unsupervised and descriptive learning tasks. We

saw that in descriptive learning the task and learning problem coincide. A clus-

tering model can be either predictive or descriptive: in the former case it is meant

to construct classes in a wholly unsupervised manner, after which the learned

model can be applied to unseen data in the usual way. Descriptive clustering,

on the other hand, only applies to the data at hand. It should be noted that

the distinction between predictive and descriptive clustering is not universally

recognised in the literature; sometimes the term ‘predictive clustering’ is used

in the slightly different sense of clustering simultaneously on the target variable

and the features (Blockeel et al., 1998).

t Like descriptive clustering, association rule discovery is another descriptive task

which is wholly unsupervised. It was introduced by Agrawal, Imielinski and Swami

(1993) and has given rise to a very large body of work in the data mining litera-

ture. Subgroup discovery is a form of supervised learning of descriptive mod-

els aimed at finding subsets of the data with a significantly different distribu-

tion of the target variable. It was first studied by Klösgen (1996) and extended

to the more general notion of exceptional model mining in order to deal with,

e.g., real-valued target variables by Leman et al. (2008). More generally, unsu-

pervised learning of descriptive models is a large subject that was pioneered by

Tukey (1977).

o
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The simplest logical expressions are equalities of the form Feature=Value and,

for numerical features, inequalities of the form Feature<Value; these are called

literals. Complex Boolean expressions can be built using logical connectives:

conjunction ^ , disjunction _ , negation ¬ and implication ! . The following

equivalences hold (the left two are called the De Morgan laws):

¬(A ^ B) ¥¬A _ ¬B ¬¬A ¥ A

¬(A _ B) ¥¬A ^ ¬B A ! B ¥¬A _ B

If Boolean expression A is true of instance x, we say that A covers x. The set

of instances covered by expression A is called its extension and denoted XA =
{x 2 X |A covers x}, where X denotes the instance space which acts as the uni-

verse of discourse (see Background 2.1 on p.51). There is a direct correspondence

between logical connectives and operations on sets: e.g., XA ^ B = XA \XB ,

XA _ B = XA [XB and X¬A = X \ XA . If XA ∂ XA0 , we say that A is at least

as general as A0, and if in addition XA 6µ XA0 we say that A is more general than

A0. This generality ordering is a partial order on logical expressions as defined in

Background 2.1. (More precisely: it is a partial order on the equivalence classes

of the relation of logical equivalence ¥.)

A clause is an implication P ! Q such that P is a conjunction of literals and Q

is a disjunction of literals. Using the equivalences above we can rewrite such an

implication as

(A ^ B) ! (C _ D) ¥¬(A ^ B) _ (C _ D) ¥¬A _ ¬B _ C _ D

and hence a clause can equivalently be seen as a disjunction of literals or their

negations. Any logical expression can be rewritten as a conjunction of clauses;

this is referred to as conjunctive normal form (CNF). Alternatively, any logical ex-

pression can be written as a disjunction of conjunctions of literals or their nega-

tion; this is called disjunctive normal form (DNF). A rule is a clause A ! B where

B is a single literal; this is also often referred to as a Horn clause, after the Ameri-

can logician Alfred Horn.

Background 4.1. Some logical concepts and notation.

we consider tree and rule models, which go considerably beyond concept learning as

they can handle multiple classes, probability estimation, regression, as well as cluster-

ing tasks.
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4.5 Concept learning: Summary and further reading

In this chapter we looked at methods for inductive concept learning: the process of

constructing a logical expression defining a set of objects from examples. This problem

was a focus of early work in artificial intelligence (Winston, 1970; Vere, 1975; Banerji,

1980), following the seminal work by psychologists Bruner, Goodnow and Austin (1956)

and Hunt, Marin and Stone (1966).

t In Section 4.1 we considered the structure of the hypothesis space: the set of pos-

sible concepts. Every hypothesis has an extension (the set of instances it covers),

and thus relationships between extensions such as subset relationships carry

over to the hypothesis space. This gives the hypothesis space a lattice structure:

a partial order with least upper bounds and greatest lower bounds. In particular,

the LGG is the least upper bound of a set of instances, and is the most conser-

vative generalisation that we can learn from the data. The concept was defined

in the context of first-order logic by Plotkin (1971), who showed that it was the

mathematical dual of the deductive operation of unification. We can extend the

hypothesis language with internal disjunction among values of a feature, which

creates a larger hypothesis space that still has a lattice structure. Internal dis-

junction is a common staple of attribute-value languages for learning following

the work of Michalski (1973). For further pointers regarding hypothesis language

and hypothesis space the reader is referred to (Blockeel, 2010a,b).

t Section 4.2 defined complete and consistent hypotheses as concepts that cover

all positive examples and no negative examples. The set of complete and consis-

tent concepts is called the version space, a notion introduced by Mitchell (1977).

The version space can be summarised by its least general and most general mem-

bers, since any concept between one least general hypothesis and another most

general one is also complete and consistent. Alternatively, we can describe the

version space by all paths from a least general to a most general hypothesis. Such

upward paths give rise to a coverage curve which describes the extension of each

concept on the path in terms of covered positives and negatives. Concept learn-

ing can then be seen as finding an upward path that goes through ROC heaven.

Syntactically different concepts can have the same extension in a particular data

set: a closed concept is the most specific one of these (technically, the LGG of

the instances in its extension). The notion is studied in formal concept anal-

ysis (Ganter and Wille, 1999) and was introduced in a data mining context by

Pasquier, Bastide, Taouil and Lakhal (1999); Garriga, Kralj and Lavrač (2008) in-

vestigate its usefulness for labelled data.

t In Section 4.3 we discussed the Horn algorithm for learning concepts described
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by conjunctions of Horn rules, first published in Angluin et al. (1992). The al-

gorithm makes use of a membership oracle, which can be seen as an early form

of active learning (Cohn, 2010; Dasgupta, 2010). Horn theories are superficially

similar to classification rule models which will be studied in Chapter 6. However,

there is an important difference, since those classification rules have the target

variable in the then-part of the rule, while the Horn clauses we are looking at here

can have any literal in the then-part. In fact, in this chapter the target variable is

not part of the logical language at all. This setting is sometimes called learning

from interpretations, since examples are truth-value assignments to our theory.

The classification rule setting is called learning from entailment, since in order

to find out whether a particular rule covers an example we need to apply logical

inference. De Raedt (1997) explains and explores the differences between these

two settings. Further introductions to first-order logic and its use in learning are

given by Flach (2010a) and De Raedt (2010).

t Section 4.4 briefly reviewed some basic concepts and results in learnability the-

ory. My account partly followed Mitchell (1997, Chapter 7); another excellent

introduction is given by Zeugmann (2010). PAC-learnability, which allows an er-

ror rate of ≤ and a failure rate of ±, was introduced in a seminal paper by Valiant

(1984). Haussler (1988) derived the sample complexity for complete and consis-

tent learners (Equation 4.1), which is linear in 1/≤ and logarithmic in 1/± and the

size of the hypothesis space. The VC-dimension as a measure of the capacity of

a hypothesis language was introduced by Vapnik and Chervonenkis (1971) in or-

der to quantify the difference between training error and true error. This allows a

statement of the sample complexity in terms of the VC-dimension (Equation 4.2)

which is due to Blumer, Ehrenfeucht, Haussler and Warmuth (1989). This same

paper proved that a model class is PAC-learnable if and only if its VC-dimension

is finite.

o
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The variance of a set of numbers X µ R is defined as the average squared difference from

the mean:

Var(X ) = 1
|X |

X

x2X
(x °x)2

where x = 1
|X |

P
x2X x is the mean of X . Expanding (x ° x)2 = x2 ° 2xx + x2 this can be

written as

Var(X ) = 1
|X |

√
X

x2X
x2 °2x

X

x2X
x +

X

x2X
x2

!

= 1
|X |

√
X

x2X
x2 °2x|X |x +|X |x2

!

= 1
|X |

X

x2X
x2 °x2

(5.3)

So the variance is the difference between the mean of the squares and the square of the

mean.

It is sometimes useful to consider the average squared difference from another value x0 2
R, which can similarly be expanded:

1
|X |

X

x2X
(x °x0)2 = 1

|X |

√
X

x2X
x2 °2x0|X |x +|X |x02

!

= Var(X )+ (x0 °x)2

The last step follows because from Equation 5.3 we have 1
|X |

P
x2X x2 = Var(X )+x2.

Another useful property is that the average squared difference between any two elements

of X is twice the variance:

1

|X |2
X

x02X

X

x2X
(x°x0)2 = 1

|X |
X

x 02X
(Var(X )+ (x0 °x)2) = Var(X )+ 1

|X |
X

x 02X
(x0 °x)2 = 2Var(X )

If X µ Rd is a set of d-vectors of numbers, we can define the variance Vari (X ) for each of

the d coordinates. We can then interpret the sum of variances
Pd

i=1 Vari (X ) as the average

squared Euclidean distance of the vectors in X to their vector mean x = 1
|X |

P
x2X x.

(You will sometimes see sample variance defined as 1
|X |°1

P
x2X (x °x)2, which is a some-

what larger value. This version arises if we are estimating the variance of a population

from which X is a random sample: normalising by |X | would underestimate the popula-

tion variance because of differences between the sample mean and the population mean.

Here, we are only concerned with assessing the spread of the given values X and not with

some unknown population, and so we can ignore this issue.)

Background 5.1. Variations on variance.

So, in order to obtain a regression tree learning algorithm, we replace the impurity

measure Imp in Algorithm 5.2 with the function Var. Notice that 1
|Y |

P
y2Y y2 is con-

stant for a given set Y , and so minimising variance over all possible splits of a given

parent is the same as maximising the weighted average of squared means in the chil-



5.4 Tree models: Summary and further reading 155

In this example we used categorical features for splitting and numerical features

for distance calculations. Indeed, in all tree examples considered so far we have only

used categorical features for splitting.7 In practice, numerical features are frequently

used for splitting: all we need to do is find a suitable threshold t so that feature F can

be turned into a binary split with conditions F ∏ t and F < t . Finding the optimal split

point is closely related to tdiscretisation of numerical features, a topic we will look at

in detail in Chapter 10. For the moment, the following observations give some idea

how we can learn a threshold on a numerical feature:

t Although in theory there are infinitely many possible thresholds, in practice we

only need to consider values separating two examples that end up next to each

other if we sort the training examples on increasing (or decreasing) value of the

feature.

t We only consider consecutive examples of different class if our task is classifi-

cation, whose target values are sufficiently different if our task is regression, or

whose dissimilarity is sufficiently large if our task is clustering.

t Each potential threshold can be evaluated as if it were a distinct binary feature.

5.4 Tree models: Summary and further reading

Tree-based data structures are ubiquitous in computer science, and the situation is no

different in machine learning. Tree models are concise, easy to interpret and learn,

and can be applied to a wide range of tasks, including classification, ranking, proba-

bility estimation, regression and clustering. The tree-based classifier for human pose

recognition in the Microsoft Kinect motion sensing device is described in Shotton et al.

(2011).

t I introduced the feature tree as the common core for all these tree-based models,

and the recursive GrowTree algorithm as a generic divide-and-conquer algorithm

that can be adapted to each of these tasks by suitable choices for the functions

that test whether a data set is sufficiently homogeneous, find a suitable label if it

is, and find the best feature to split on if it isn’t.

t Using a feature tree to predict class labels turns them into decision trees, the

subject of Section 5.1. There are two classical accounts of decision trees in ma-

chine learning, which are very similar algorithmically but differ in details such as

heuristics and pruning strategies. Quinlan’s approach was to use entropy as im-

purity measure, and progressed from the ID3 algorithm (Quinlan, 1986), which

7Categorical features are features with a relatively small set of discrete values. Technically, they distinguish

themselves from numerical features by not having a scale or an ordering. This is further explored in Chapter

10.
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itself was inspired by Hunt, Marin and Stone (1966), to the sophisticated C4.5

system (Quinlan, 1993). The CART approach stands for ‘classification and regres-

sion trees’ and was developed by Breiman, Friedman, Olshen and Stone (1984);

it uses the Gini index as impurity measure. The
p

Gini impurity measure was

introduced by Dietterich, Kearns and Mansour (1996), and is hence sometimes

referred to as DKM . The geometric construction to find Imp({D1,D2}) in Figure

5.2 (right) was also inspired by that paper.

t Employing the empirical distributions in the leaves of a feature tree in order to

build rankers and probability estimators as described in Section 5.2 is a much

more recent development (Ferri et al., 2002; Provost and Domingos, 2003). Ex-

perimental results demonstrating that better probability estimates are obtained

by disabling tree pruning and smoothing the empirical probabilities by means

of the Laplace correction are presented in the latter paper and corroborated by

Ferri et al. (2003). The extent to which decision tree splitting criteria are insensi-

tive to unbalanced classes or misclassification costs was studied and explained

by Drummond and Holte (2000) and Flach (2003). Of the three splitting criteria

mentioned above, only
p

Gini is insensitive to such class and cost imbalance.

t Tree models are grouping models that aim to minimise diversity in their leaves,

where the appropriate notion of diversity depends on the task. Very often diver-

sity can be interpreted as some kind of variance, an idea that already appeared

in (Breiman et al., 1984) and was revisited by Langley (1994), Kramer (1996) and

Blockeel, De Raedt and Ramon (1998), among others. In Section 5.3 we saw how

this idea can be used to learn regression and clustering trees (glossing over many

important details, such as when we should stop splitting nodes).

It should be kept in mind that the increased expressivity of tree models compared

with, say, conjunctive concepts means that we should safeguard ourselves against over-

fitting. Furthermore, the greedy divide-and-conquer algorithm has the disadvantage

that small changes in the training data may lead to a different choice of the feature at

the root of the tree, which will influence the choice of feature at subsequent splits. We

will see in Chapter 11 how methods such as bagging can be applied to help reduce this

kind of model variance.

o
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of hypotheses and target predicates that are to be learned, and introduces computa-

tional challenges such as non-termination. However, this doesn’t mean that it cannot

be done. Related techniques can be used to learn multiple, interrelated predicates at

once, and to invent new background predicates that are completely unobserved.

6.5 Rule models: Summary and further reading

In a decision tree, a branch from root to a leaf can be interpreted as a conjunctive clas-

sification rule. Rule models generalise this by being more flexible about the way in

which several rules are combined into a model. The typical rule learning algorithm

is the covering algorithm, which iteratively learns one rule and then removes the ex-

amples covered by that rule. This approach was pioneered by Michalski (1975) with his

AQ system, which became highly developed over three decades (Wojtusiak et al., 2006).

General overviews are provided by Fürnkranz (1999, 2010) and Fürnkranz, Gamberger

and Lavrač (2012). Coverage plots were first used by Fürnkranz and Flach (2005) to

achieve a better understanding of rule learning algorithms and demonstrate the close

relationship (and in many cases, equivalence) of commonly used search heuristics.

t Rules can overlap and thus we need a strategy to resolve potential conflicts be-

tween rules. One such strategy is to combine the rules in an ordered rule list,

which was the subject of Section 6.1. Rivest (1987) compares this approach with

decision trees, calling the rule-based model a decision list (I prefer the term ‘rule

list’ as it doesn’t carry a suggestion that the elements of the list are single lit-

erals). Well-known rule list learners include CN2 (Clark and Niblett, 1989) and

Ripper (Cohen, 1995), the latter being particularly effective at avoiding overfit-

ting through incremental reduced-error pruning (Fürnkranz and Widmer, 1994).

Also notable is the Opus system (Webb, 1995), which distinguishes itself by per-

forming a complete search through the space of all possible rules.

t In Section 6.2 we looked at unordered rule sets as an alternative to ordered rule

lists. The covering algorithm is adapted to learn rules for a single class at a time,

and to remove only covered examples of the class currently under consideration.

CN2 can be run in unordered mode to learn rule sets (Clark and Boswell, 1991).

Conceptually, both rule lists and rule sets are special cases of rule trees, which

distinguish all possible Boolean combinations of a given set of rules. This allows

us to see that rule lists lead to fewer instance space segments than rule sets (over

the set of rules); on the other hand, rule list coverage curves can be made convex

on the training set, whereas rule sets need to estimate the class distribution in

the regions where rules overlap.

t Rule models can be used for descriptive tasks, and in Section 6.3 we considered
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rule learning for subgroup discovery. The weighted covering algorithm was in-

troduced as an adaption of CN2 by Lavrač, Kavšek, Flach and Todorovski (2004);

Abudawood and Flach (2009) generalise this to more than two classes. Algorithm

6.7 learns association rules and is adapted from the well-known Apriori algorithm

due to Agrawal, Mannila, Srikant, Toivonen and Verkamo (1996). There is a very

wide choice of alternative algorithms, surveyed by Han et al. (2007). Association

rules can also be used to build effective classifiers (Liu et al., 1998; Li et al., 2001).

t The topic of first-order rule learning briefly considered in Section 6.4 has been

studied for the last 40 years and has a very rich history. De Raedt (2008) pro-

vides an excellent recent introduction, and an overview of recent advances and

open problems is provided by Muggleton et al. (2012). Flach (1994) gives an in-

troduction to Prolog and also provides high-level implementations of some of

the key techniques in inductive logic programming. The FOIL system by Quinlan

(1990) implements a top–down learning algorithm similar to the one discussed

here. The bottom–up technique was pioneered in the Golem system (Muggle-

ton and Feng, 1990) and further refined in Progol (Muggleton, 1995) and in Aleph

(Srinivasan, 2007), two of the most widely used ILP systems. First-order rules

can also be learned in an unsupervised fashion, for example by Tertius which

learns first-order clauses (not necessarily Horn) (Flach and Lachiche, 2001) and

Warmr which learns first-order association rules (King et al., 2001). Higher-order

logic provides more powerful data types that can be highly beneficial in learning

(Lloyd, 2003). A more recent development is the combination of probabilistic

modelling with first-order logic, leading to the area of statistical relational learn-

ing (De Raedt and Kersting, 2010).

o
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If x1 and x2 are two scalars or vectors of the same dimension and Æ and Ø are arbitrary

scalars, then Æx1+Øx2 is called a linear combination of x1 and x2. If f is a linear function

of x, then

f (Æx1 +Øx2) =Æ f (x1)+Ø f (x2)

In words, the function value of a linear combination of some inputs is a linear combina-

tion of their function values. As a special case, ifØ= 1°Æwe are taking a weighted average

of x1 and x2, and the linearity of f then means that the function value of the weighted av-

erage is the weighted average of the function values.

Linear functions take particular forms, depending on the domain and codomain of f . If x

and f (x) are scalars, it follows that f is of the form f (x) = a+bx for some constants a and

b; a is called the intercept and b the slope. If x = (x1, . . ., xd ) is a vector and f (x) is a scalar,

then f is of the form

f (x) = a +b1x1 + . . .+bd xd = a +b ·x (7.1)

with b = (b1, . . .,bd ). The equation f (x) = 0 defines a plane in Rd perpendicular to the

normal vector b.

The most general case is where f (x) is a d 0-dimensional vector, in which case f is of the

form f (x) = Mx+t, where M is a d 0-by-d matrix representing a linear transformation such

as a rotation or a scaling, and t is a d 0-vector representing a translation. In this case f is

called an affine transformation (the difference between linear and affine transformations

is that the former maps the origin to itself; notice that a linear function of the form of

Equation 7.1 is a linear transformation only if the intercept is 0).

In all these forms we can avoid representing the intercept a or the translation t separately

by using homogeneous coordinates. For instance, by writing b± = (a,b1, . . .,bd ) and x± =
(1, x1, . . ., xd ) in Equation 7.1 we have f (x) = b± ·x± (see also Background 1.2 on p.24).

Examples of non-linear functions are the polynomials in x of degree p > 1: g (x) =
a0+a1x+a2x2+. . .+ap xp =Pp

i=0 ai xi . Other non-linear functions can be approximated

by a polynomial through their Taylor expansion. The linear approximation of a function

g at x0 is g (x0)+ g 0(x0)(x ° x0), where g 0(x) is the derivative of x. A piecewise linear ap-

proximation is obtained by combining several linear approximations at different points

x0.

Background 7.1. Linear models.

simple as possible, but not simpler’ that we introduced on p.30). Here are a couple of

manifestations of this simplicity.

t Linear models are parametric, meaning that they have a fixed form with a small

number of numeric parameters that need to be learned from data. This is
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X usually denotes an n-by-d data matrix containing n instances in rows described by d

features or variables in columns. Xr · denotes the r -th row of X, X·c denotes the c-th col-

umn, and Xr c denotes the entry in the r -th row and c-th column. We also use i and

j to range over rows and columns, respectively. The j -th column mean is defined as

µ j = 1
n

Pn
i=1 Xi j ; µT is a row vector containing all column means. If 1 is an n-vector con-

taining only ones, then 1µT is an n-by-d matrix whose rows are µT; hence X0 = X°1µT

has mean zero in each column and is referred to as the zero-centred data matrix.

The scatter matrix is the d-by-d matrix S = X0TX0 =
≥
X°1µT

¥T ≥
X°1µT

¥
= XTX ° nM,

where M = µµT is a d-by-d matrix whose entries are products of column means M j c =
µ jµc . The covariance matrix of X is ß = 1

n S whose entries are the pairwise covari-

ances æ j c = 1
n

Pn
i=1

≥
Xi j °µ j

¥°
Xi c °µc

¢
= 1

n

≥Pn
i=1 Xi j Xi c °µiµc

¥
. Two uncorrelated fea-

tures have a covariance close to 0; positively correlated features have a positive covari-

ance, indicating a certain tendency to increase or decrease together; a negative covari-

ance indicates that if one feature increases, the other tends to decrease and vice versa.

æ j j = 1
n

Pn
i=1

≥
Xi j °µ j

¥2
= 1

n

≥Pn
i=1 X2

i j °µ
2
j

¥
is the variance of column j , also denoted

as æ2
j . The variance is always positive and indicates the spread of the values of a feature

around their mean.

A small example clarifies these definitions:

X =

0

B@
5 0

3 5

1 7

1

CA 1µT =

0

B@
3 4

3 4

3 4

1

CA X0 =

0

B@
2 °4

0 1

°2 3

1

CA G =

0

B@
25 15 5

15 34 38

5 38 50

1

CA

XTX =
√

35 22

22 74

!

M =
√

9 12

12 16

!

S =
√

8 °14

°14 26

!

ß=
√

8/3 °14/3

°14/3 26/3

!

We see that the two features are negatively correlated and that the second feature has the

larger variance. Another way to calculate the scatter matrix is as a sum of outer products,

one for each data point: S =Pn
i=1

≥
Xi ·°µT

¥T ≥
Xi ·°µT

¥
. In our example we have

≥
X1·°µT

¥T ≥
X1·°µT

¥
=

√
2

°4

!≥
2 °4

¥
=

√
4 °8

°8 16

!

≥
X2·°µT

¥T ≥
X2·°µT

¥
=

√
0

1

!≥
0 1

¥
=

√
0 0

0 1

!

≥
X3·°µT

¥T ≥
X3·°µT

¥
=

√
°2

3

!≥
°2 3

¥
=

√
4 °6

°6 9

!

Background 7.2. Some more matrix notation.
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Optimisation is a broad term denoting the problem of finding the best item or value

among a set of alternatives. We have already seen a very simple, unconstrained form of

optimisation in Example 7.1 on p.197, where we found the values of a and b minimising

the sum of squared residuals f (a,b) =Pn
i=1(wi ° (a +bhi ))2; this can be denoted as

a§,b§ = argmin
a,b

f (a,b)

f is called the objective function; it can be linear, quadratic (as in this case), or more com-

plex. We found the minimum of f by setting the partial derivatives of f with respect to

a and b to 0, and solving for a and b; the vector of these partial derivatives is called the

gradient and denoted r f , so a succinct way of defining the unconstrained optimisation

problem is: find a and b such that r f (a,b) = 0. In this particular case the objective func-

tion is convex, which essentially means that there is a unique global minimum. This is,

however, not always the case.

A constrained optimisation problem is one where the alternatives are subject to con-

straints, for instance

a§,b§ = argmin
a,b

f (a,b) subject to g (a,b) = c

If the relationship expressed by the constraint is linear, say a ° b = 0, we can of course

eliminate one of the variables and solve the simpler, unconstrained problem. However,

this may not be possible if the constraints are non-linear. Lagrange multipliers are a pow-

erful way of dealing with the general case. We form the Lagrange function defined by

§(a,b,∏) = f (a,b)°∏(g (a,b)° c)

where ∏ is the Lagrange multiplier, and solve the unconstrained problem r§(a,b,∏) = 0.

Since ra,b§(a,b,∏) =r f (a,b)°∏rg (a,b) and r∏§(a,b,∏) = g (a,b)° c, this is a succinct

way of requiring (i) that the gradients of f and g point in the same direction, and (ii) that

the constraint is satisfied. We can include multiple equality constraints and also inequal-

ity constraints, each with their own Lagrange multiplier.

From the Lagrange function it is possible to derive a dual optimisation problem where

we find the optimal values of the Lagrange multipliers. In general, the solution to the

dual problem is only a lower bound on the solution to the primal problem, but under a

set of conditions known as the Karush–Kuhn–Tucker conditions (KKT) the two solutions

become equal. The quadratic optimisation problem posed by support vector machines is

usually solved in its dual form.

Background 7.3. Basic concepts and terminology in mathematical optimisation.
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7.6 Linear models: Summary and further reading

After considering logical models in the previous three chapters we had a good look at

linear models in this chapter. Logical models are inherently non-numerical, and so

deal with numerical features by using thresholds to convert them into two or more

intervals. Linear models are almost diametrically opposite in that they can deal with

numerical features directly but need to pre-process non-numerical features.3 Geomet-

rically, linear models use lines and planes to build the model, which essentially means

that a certain increase or decrease in one of the features has the same effect, regardless

of that feature’s value or any of the other features. They are simple and robust to varia-

tions in the training data, but sometimes suffer from underfitting as a consequence.

t In Section 7.1 we considered the least-squares method that was originally con-

ceived to solve a regression problem. This classical method, which derives its

name from minimising the sum of squared residuals between predicted and ac-

tual function values, is described in innumerable introductory mathematics and

engineering texts (and was one of the example programs I remember running

on my father’s Texas Instruments TI-58 programmable calculator). We first had a

look at the problem in univariate form, and then derived the general solution

as ŵ = (XTX)°1XTy, where (XTX)°1 is a transformation that decorrelates, cen-

tres and normalises the features. We then discussed regularised versions of lin-

ear regression: ridge regression was introduced by Hoerl and Kennard (1970),

and the lasso which naturally leads to sparse solutions was introduced by Tib-

shirani (1996). We saw how the least-squares method could be applied to bi-

nary classification by encoding the classes by +1 and °1, leading to the solution

ŵ = (XTX)°1(Pos µ© °Neg µ™). This generalises the basic linear classifier by tak-

ing feature correlation and unequal class prevalence into account, but at a con-

siderably increased computational cost (quadratic in the number of instances

and cubic in the number of features).

t Section 7.2 presented another classical linear model, the perceptron. Unlike the

least-squares method, which always finds the optimal solution in terms of sum

of squared residuals, the perceptron is a heuristic algorithm that depends, for

one thing, on the order in which the examples are presented. Invented by Rosen-

blatt (1958), its convergence for linearly separable data was proved by Novikoff

(1962), who gave an upper bound on the number of mistakes made before the

perceptron converged. Minsky and Papert (1969) proved further formal proper-

ties of the perceptron, but also demonstrated the limitations of a linear classifier.

These were overcome with the development, over an extended period of time

and with contributions from many people, of the multilayer perceptron and its

3Ways to pre-process non-numerical features for use in linear models are discussed in Chapter 10.
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back-propagation training algorithm (Rumelhart, Hinton and Williams, 1986). In

this section we also learned about the dual, instance-based view of linear clas-

sification in which we are learning instance weights rather than feature weights.

For the perceptron these weights are the number of times the example has been

misclassified during training.

t Maximum-margin classification with support vector machines was the topic of

Section 7.3. The approach was proposed by Boser, Guyon and Vapnik (1992).

Using the dual formulation, the instance weights are non-zero only for the sup-

port vectors, which are the training instances on the margin. The soft-margin

generalisation is due to Cortes and Vapnik (1995). Margin errors are allowed, but

the total margin error is added as a regularisation term to the objective function

to be minimised, weighted by the complexity parameter C ; all instances inside

the margin receive instance weight C . As we have seen, by making C sufficiently

small the support vector machine summarises the classes by their unweighted

class means and hence is very similar to the basic linear classifier. A general

introduction to SVMs is provided by Cristianini and Shawe-Taylor (2000). The

sequential minimal optimisation algorithm is an often-used solver which iter-

atively selects pairs of multipliers to optimise analytically and is due to Platt

(1998).

t In Section 7.4 we considered two methods to turn linear classifiers into proba-

bility estimators by converting the signed distance from the decision boundary

into class probabilities. One well-known method is to use the logistic function,

either straight out of the box or by fitting location and spread parameters to the

data. Although this is often presented as a simple trick, we saw how it can be

justified by assuming that the distances per class are normally distributed with

the same variance; this latter assumption is needed to make the transforma-

tion monotonic. A non-parametric alternative is to use the ROC convex hull to

obtain calibrated probability estimates. As was already mentioned in the sum-

mary of Chapter 2, the approach has its roots in isotonic regression (Best and

Chakravarti, 1990) and was introduced to the machine learning community by

Zadrozny and Elkan (2002). Fawcett and Niculescu-Mizil (2007) and Flach and

Matsubara (2007) show its equivalence to calibration by means of the ROC con-

vex hull.

t Finally, Section 7.5 discussed briefly how to go beyond linearity with kernel meth-

ods. The ‘kernel trick’ can be applied to any learning algorithm that can be en-

tirely described in terms of dot products, which includes most approaches dis-

cussed in this chapter. The beauty is that we are implicitly classifying in a high-

dimensional feature space, without having to construct the space explicitly. I
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gave the kernel perceptron as a simple example of a kernelised algorithm; in the

next chapter we will see another example. Shawe-Taylor and Cristianini (2004)

provide an excellent reference bringing together a wealth of material on the use

of kernels in machine learning, and Gärtner (2009) discusses how kernel meth-

ods can be applied to structured, non-numerical data.

o
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8.7 Distance-based models: Summary and further reading

Along with linear models, distance-based models are the second group of models with

strong geometric intuitions. The literature on distance-based models is rich and di-

verse; in this chapter I’ve concentrated on getting the main intuitions across.

t In Section 8.1 we reviewed the most commonly used distance metrics: the Minkowski

distance or p-norm with special cases Euclidean distance (p = 2) and Manhat-

tan distance (p = 1); the Hamming distance, which counts the number of bits or

literals that are different; and the Mahalanobis distance, which decorrelates and

normalises the features (Mahalanobis, 1936). Other distances can be taken into

account, as long as they satisfy the requirements of a distance metric listed in

Definition 8.2.

t Section 8.2 investigated the key concepts of neighbours and exemplars. Exem-

plars are either centroids that find a centre of mass according to a chosen dis-

tance metric, or medoids that find the most centrally located data point. The

most commonly used centroid is the arithmetic mean, which minimises squared

Euclidean distance to all other points. Other definitions of centroids are possi-

ble but harder to compute: e.g., the geometric median is the point minimising

Euclidean distance, but does not admit a closed-form solution. The complex-

ity of finding a medoid is always quadratic regardless of the distance metric. We

then considered nearest-neighbour decision rules, and looked in particular at

the difference between 2-norm and 1-norm nearest-exemplar decision bound-

aries, and how these get refined by switching to a 2-nearest-exemplars decision

rule.

t In Section 8.3 we discussed nearest-neighbour models which simply use the train-

ing data as exemplars. This is a very widely used model for classification, the ori-

gins of which can be traced back to Fix and Hodges (1951). Despite its simplicity,

it can be shown that with sufficient training data the error rate is at most twice

the optimal error rate (Cover and Hart, 1967). The 1-nearest neighbour classi-

fier has low bias but high variance; by increasing the number of neighbours over

which we aggregate we can reduce the variance but at the same time increase

the bias. The nearest-neighbour decision rule can also be applied to real-valued

target variables, and more generally to any task where we have an appropriate

aggregator for multiple target values.

t Section 8.4 considered a number of algorithms for distance-based clustering us-

ing either arithmetic means or medoids. The K -means algorithm is a simple

heuristic approach to solve the K -means problem that was originally proposed
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in 1957 and is sometimes referred to as Lloyd’s algorithm (Lloyd, 1982). It is de-

pendent on the initial configuration and can easily converge to the wrong sta-

tionary point. We also looked at the K -medoids and partitioning around medoids

algorithms, the latter due to Kaufman and Rousseeuw (1990). These are compu-

tationally more expensive due to the use of medoids. Silhouettes (Rousseeuw,

1987) are a useful technique to check whether points are on average closer to the

other members of their cluster than they are to the members of the neighbouring

cluster. Much more detail about these and other clustering methods is provided

by Jain, Murty and Flynn (1999).

t Whereas the previous clustering methods all result in a partition of the instance

space and are therefore predictive, hierarchical clustering discussed in Section

8.5 applies only to the given data and is hence descriptive. A distinct advantage

is that the clustering is constructed in the form of a dendrogram, which means

that the number of clusters does not need to be specified in advance and can be

chosen by inspecting the dendrogram. However, the method is computationally

expensive and infeasible for large data sets. Furthermore, it is not always obvious

which of the possible linkage functions to choose.

t Finally, in Section 8.6 we briefly considered how distances can be ‘kernelised’,

and we gave one example in the form of kernel K -means. The use of a non-

Euclidean distance metric leads to quadratic complexity of recalculating the clus-

ters in each iteration.

o
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The univariate normal or Gaussian distribution has the following probability density func-

tion:
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The distribution has two parameters: µ, which is the mean or expected value, as well as

the median (i.e., the point where the area under the density function is split in half) and

the mode (i.e., the point where the density function reaches its maximum); and æ, which

is the standard deviation and determines the width of the bell-shaped curve.

z = (x °µ)/æ is the z-score associated with x; it measures the number of standard devia-

tions between x and the mean (it has itself mean 0 and standard deviation 1). It follows

that P (x|µ,æ) = 1
æP (z|0,1), where P (z|0,1) denotes the standard normal distribution. In

other words, any normal distribution can be obtained from the standard normal distribu-

tion by scaling the x-axis with a factor æ, scaling the y-axis with a factor 1/æ (so the area

under the curve remains 1), and translating the origin over µ.

The multivariate normal distribution over d-vectors x = (x1, . . . , xd )T 2Rd is

P (x|µ,ß) = 1
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µ
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The parameters are the mean vector µ = (µ1, . . . ,µd )T and the d-by-d covariance matrix

ß (see Background 7.2 on p.200). ß°1 is the inverse of the covariance matrix, and |ß| is

its determinant. The components of x may be thought of as d features that are possibly

correlated.

If d = 1, then ß = æ2 = |ß| and ß°1 = 1/æ2, which gives us the univariate Gaussian as

a special case. For d = 2 we have ß =
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. Using z-scores we derive the following expression for the bivariate

normal distribution:
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where zi = (xi °µi )/æi for i = 1,2, and Ω =æ12/æ1æ2 is the correlation coefficient between

the two features.

The multivariate standard normal distribution has µ= 0 (a d-vector with all 0s) andß= I

(the d-by-d identity matrix), and thus P (x|0,I) = 1
(2º)d/2 exp

≥
° 1

2 x ·x
¥
.

Background 9.1. The normal distribution.
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The Bernoulli distribution, named after the Swiss seventeenth century mathematician Ja-

cob Bernoulli, concerns Boolean or binary events with two possible outcomes: success or

1, and failure or 0. A Bernoulli distribution has a single parameter µ which gives the prob-

ability of success: hence P (X = 1) = µ and P (X = 0) = 1°µ. The Bernoulli distribution has

expected value E [X ] = µ and variance E
£
(X °E [X ])2§

= µ(1°µ).

The binomial distribution arises when counting the number of successes S in n indepen-

dent Bernoulli trials with the same parameter µ. It is described by

P (S = s) =
√

n
s

!

µs (1°µ)n°s for s 2 {0, . . . ,n}

This distribution has expected value E [S] = nµ and variance E
£
(S °E [S])2§

= nµ(1°µ).

The categorical distribution generalises the Bernoulli distribution to k ∏ 2 outcomes. The

parameter of the distribution is a k-vector ✓ =
°
µ1, . . . ,µk

¢
such that

Pk
i=1 µi = 1.

Finally, the multinomial distribution tabulates the outcomes of n independent and iden-

tically distributed (i.i.d.) categorical trials. That is, X =
°
X1, . . . , Xk

¢
is a k-vector of integer

counts, and

P (X =
°
x1, . . . , xk
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with
Pk

i=1 xi = n. Notice that setting n = 1 gives us an alternative way of stating the cat-

egorical distribution as P (X =
°
x1, . . . , xk

¢
) = µx1

1 · · ·µxk
k , with exactly one of the xi equal

to 1 and the rest set to 0. Furthermore, setting k = 2 gives an alternative expression for

the Bernoulli distribution as P (X = x) = µx (1°µ)1°x for x 2 {0,1}. It is also useful to note

that if X follows a multinomial distribution, then each component Xi follows a binomial

distribution with parameter µi .

We can estimate the parameters of these distributions by counting in a straightforward

way. Suppose a b a c c b a a b c is a sequence of words. We might be interested in

individual words being a or not, and interpret the data as coming from 10 i.i.d. Bernoulli

trials, which would allow us to estimate µ̂a = 4/10 = 0.4. This same parameter generates

a binomial distribution of the number of occurrences of the word a in similar sequences.

Alternatively, we can estimate the parameters of the categorical (word occurrences) and

multinomial (word counts) distributions as ✓̂ = (0.4,0.3,0.3).

It is almost always a good idea to smooth these distributions by including pseudo-counts.

Imagine our vocabulary includes the word d but we haven’t yet observed it, then a

maximum-likelihood estimate would set µ̂d = 0. We can smooth this by adding a virtual

occurrence of each word to our observations, leading to ✓̂0 = (5/14,4/14,4/14,1/14). In

the case of a binomial this is the Laplace correction.

Background 9.2. Probability distributions for categorical data.
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perspective, where we need to define a prior distribution on models. The MDL view-

point offers a concrete way of defining model priors by means of codes.

9.6 Probabilistic models: Summary and further reading

In this chapter we covered a range of machine learning models that are all based on the

idea that features and target variables can be modelled as random variables, giving the

opportunity to explicitly represent and manipulate the level of certainty we have about

those variables. Such models are usually predictive in that they result in a conditional

distribution P (Y |X ) with which Y can be predicted from X . Generative models esti-

mate the joint distribution P (Y , X ) – often through the likelihood P (X |Y ) and the prior

P (Y ) – from which the posterior P (Y |X ) can be obtained, while conditional models

learn the posterior P (Y |X ) directly without spending resources on learning P (X ). The

‘Bayesian’ approach to machine learning is characterised by concentrating on the full

posterior distribution wherever this is feasible, rather than just deriving a maximising

value.

t In Section 9.1 we saw that the normal or Gaussian distribution supports many

useful geometric intuitions, essentially because the negative logarithm of the

Gaussian likelihood can be interpreted as a squared distance. Straight decision

boundaries result from having the same per-class covariance matrices, which

means that models resulting in such linear boundaries, including linear classi-

fiers, linear regression and K -means clustering, can be interpreted from a prob-

abilistic viewpoint that makes their inherent assumptions explicit. Two exam-

ples of this are that the basic linear classifier is Bayes-optimal for uncorrelated,

unit-variance Gaussian features; and least-squares regression is optimal for lin-

ear functions contaminated by Gaussian noise on the target variable.

t Section 9.2 was devoted to different versions of the naive Bayes classifier, which

makes the simplifying assumption that features are independent within each

class. Lewis (1998) gives an overview and history. This model is widely used

in information retrieval and text classification as it is often a good ranker if not a

good probability estimator. While the model that is usually understood as naive

Bayes treats features as categorical or Bernoulli random variables, variants em-

ploying a multinomial model tend to better model the number of occurrences

of words in a document (McCallum and Nigam, 1998). Real-valued features can

be taken into account by either modelling them as normally distributed within

each class, or by non-parametric density estimation – John and Langley (1995)

suggest that the latter gives better empirical results. Webb, Boughton and Wang

(2005) discuss ways of relaxing the strong independence assumptions made by
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naive Bayes. Probability smoothing by means of the m-estimate was introduced

by Cestnik (1990).

t Perhaps paradoxically, I don’t think there is anything particularly ‘Bayesian’ about

the naive Bayes classifier. While it is a generative probabilistic model estimating

the posterior P (Y |X ) through the joint P (Y , X ), in practice the posterior is very

poorly calibrated owing to the unrealistic independence assumptions. The rea-

son naive Bayes is often successful is because of the quality of argmaxY P (Y |X )

rather than the quality of the posterior as such, as analysed by Domingos and

Pazzani (1997). Furthermore, even the use of Bayes’ rule in determining the max-

imising Y can be avoided, as it only serves to transform uncalibrated likelihoods

into uncalibrated posteriors. So my recommendation is to use naive Bayes like-

lihoods as scores on an unknown scale whose decision threshold needs to be

calibrated by means of ROC analysis, as has been discussed several times before.

t In Section 9.3 we looked at the widely used logistic regression model. The ba-

sic idea is to combine a linear decision boundary with logistic calibration, but to

train this in a discriminative fashion by optimising conditional likelihood. So,

rather than modelling the classes as clouds of points and deriving a decision

boundary from those clouds, logistic regression concentrates on areas of class

overlap. It is an instance of the larger class of generalised linear models (Nelder

and Wedderburn, 1972). Jebara (2004) discusses the advantages of discrimina-

tive learning in comparison with generative models. Discriminative learning can

also be applied to sequential data in the form of conditional random fields (Laf-

ferty et al., 2001)

t Section 9.4 presented the Expectation-Maximisation algorithm as a general way

of learning models involving unobserved variables. This general form of EM was

proposed by Dempster, Laird and Rubin (1977) based on a variety of earlier work.

We have seen how it can be applied to Gaussian mixture models to obtain a more

general version of K -means predictive clustering, which is also able to estimate

cluster shapes and sizes. However, this increases the number of parameters of

the model and thus the risk of getting stuck in a non-optimal stationary config-

uration. (Little and Rubin, 1987) is a standard reference for dealing with missing

data.

t Finally, in Section 9.5 we briefly discussed some ideas related to learning as com-

pression. The link with probabilistic modelling is that both seek to model and ex-

ploit the non-random aspects of the data. In a simplified setting, the minimum

description length principle can be derived from Bayes’ rule by taking the nega-

tive logarithm, and states that models minimising the description length of the
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model and of the data given the model should be preferred. The first term quan-

tifies the complexity of the model, and the second term quantifies its accuracy

(as only the model’s errors need to be encoded explicitly). The advantage of the

MDL principle is that encoding schemes are often more tangible and easier to

define than prior distributions. However, not just any encoding will do: as with

their probabilistic counterparts, these schemes need to be justified in the do-

main being modelled. Pioneering work in this area has been done by Solomonoff

(1964a,b); Wallace and Boulton (1968); Rissanen (1978), among others. An excel-

lent introduction and overview is provided by Grünwald (2007).

o
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Imagine a swimmer who swims the same distance d on two different days, taking a sec-

onds one day and b seconds the next. On average, it took her therefore c = (a +b)/2 sec-

onds, with an average speed of d/c = 2d/(a+b). Notice how this average speed is not cal-

culated as the normal or arithmetic mean of the speeds, which would yield (d/a+d/b)/2:

to calculate average speed over a fixed distance we use a different mean called the har-

monic mean. Given two numbers x and y (in our swimming example these are the speeds

on either day, d/a and d/b), the harmonic mean h is defined as

h(x, y) = 2
1/x +1/y

= 2x y
x + y

Since 1/h(x, y) = (1/x +1/y)/2, we observe that calculating the harmonic mean on a scale

with unit u corresponds to calculating the arithmetic mean on the reciprocal scale with

unit 1/u. In the example, speed with fixed distance is expressed on a scale reciprocal to

the time scale, and since we use the arithmetic mean to average time, we use the harmonic

mean to average speed. (If we average speed over a fixed time interval this is expressed on

the same scale as distance and thus we would use the arithmetic mean.)

A good example of where the harmonic mean is used in machine learning arises when we

average precision and recall of a classifier. Remember that precision is the proportion of

positive predictions that is correct (prec = TP/(TP +FP)), and recall is the proportion of

positives that is correctly predicted (rec = TP/(TP +FN)). Suppose we first calculate the

number of mistakes averaged over the classes: this is the arithmetic mean Fm = (FP +
FN)/2. We can then derive

TP
TP+Fm

= TP
TP+ (FP+FN)/2

= 2TP
(TP+FP)+ (TP+FN)

= 2
1/prec+1/rec

We recognise the last term as the harmonic mean of precision and recall. Since the enu-

merator of both precision and recall is fixed, taking the arithmetic mean of the denomina-

tors corresponds to taking the harmonic mean of the ratios. In information retrieval this

harmonic mean of precision and recall is very often used and called the F-measure.

Yet other means exist for other scales. In music, going from one note to a note one oc-

tave higher corresponds to doubling the frequency. So frequencies f and 4 f are two oc-

taves apart, and it makes sense to take the octave in between with frequency 2 f as their

mean. This is achieved by the geometric mean, which is defined as g (x, y) =p
x y . Since

log
p

x y = (log x y)/2 = (log x + log y)/2 it follows that the geometric mean corresponds to

the arithmetic mean on a logarithmic scale. All these means have in common that the

mean of two values is an intermediate value, and that they can easily be extended to more

than two values.

Background 10.1. On scales and means.
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name latent semantic indexing (LSA) (‘latent’ is synonymous with ‘hidden’). Instead

of film genres, LSA uncovers document topics by decomposing matrices containing

word counts per document, under the assumption that the word counts per topic are

independent and can thus simply be added up.3 The other main application of ma-

trix factorisation is completion of missing entries in a matrix, the idea being that if we

approximate the observed entries in the matrix as closely as possible using a low-rank

decomposition, this allows us to infer the missing entries.

10.4 Features: Summary and further reading

In this chapter we have given features some long-overdue attention. Features are the

telescopes through which we observe the data universe and therefore an important

unifying force in machine learning. Features are related to measurements in science,

but there is no widespread consensus on how to formalise and categorise different

measurements – I have taken inspiration from Stevens’ scales of measurements (Stevens,

1946), but otherwise aimed to stay close to current practice in machine learning.

t The main kinds of feature distinguished in Section 10.1 are categorical, ordinal

and quantitative features. The latter are expressed on a quantitative scale and

admit the calculation of the widest range of statistics of tendency (mean, me-

dian, mode; see (von Hippel, 2005) for a discussion of rules of thumb regarding

these), dispersion (variance and standard deviation, range, interquartile range)

and shape (skewness and kurtosis). In machine learning quantitative features

are often referred to as continuous features, but I think this term is inappropri-

ate as it wrongly suggests that their defining feature is somehow an unlimited

precision. It is important to realise that quantitative features do not necessarily

have an additive scale: e.g., quantitative features expressing a probability are ex-

pressed on a multiplicative scale, and the use of Euclidean distance, say, would

be inappropriate for non-additive features. Ordinal features have order but not

scale; and categorical features (also called nominal or discrete) have neither or-

der nor scale.

t Structured features are first-order logical statements that refer to parts of objects

by means of local variables and use some kind of aggregation, such as existential

quantification or counting, to extract a property of the main object. Constructing

first-order features prior to learning is often referred to as propositionalisation;

3Other models are possible: e.g., in Boolean matrix decomposition the matrix product is changed to a

Boolean product in which integer addition is replaced by Boolean disjunction (so that 1+ 1 = 1), with the

effect that additional topics do not provide additional explanatory power for the occurrence of a word in a

document.
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Kramer et al. (2000) and Lachiche (2010) give surveys, and an experimental com-

parison of different approaches is carried out by Krogel et al. (2003).

t In Section 10.2 we looked at a number of feature transformations. Discretisa-

tion and thresholding are the best-known of these, turning a quantitative fea-

ture into a categorical or a Boolean one. One of the most effective discretisation

methods is the recursive partitioning algorithm using information gain to find

the thresholds and a stopping criterion derived from the minimum description

length principle proposed by Fayyad and Irani (1993). Other overviews and pro-

posals are given by Boullé (2004, 2006). The agglomerative merging approach

using ¬2 was proposed by Kerber (1992).

t We have seen that in a two-class setting, supervised discretisation can be vi-

sualised by means of coverage curves. This then naturally leads to the idea of

using these coverage curves and their convex hull to calibrate rather than just

discretise the features. After all, ordinal and quantitative features are univari-

ate rankers and scoring classifiers and thus the same classifier calibration meth-

ods can be applied, in particular logistic and isotonic calibration as discussed

in Section 7.4. The calibrated features live in probability space, but we might

prefer to work with log-odds space instead as this is additive rather than multi-

plicative. Fitting data to a fixed linear decision boundary in calibrated log-odds

space is closely related to training a naive Bayes model. Isotonic calibration leads

to piecewise axis-parallel decision boundaries; owing to the discretising nature

of isotonic calibration this can be understood as the constructing of a grouping

model, even if the original model in the uncalibrated space was a grading model.

t Section 10.3 was devoted to feature construction and selection. Early approaches

to feature construction and constructive induction were proposed by Ragavan

and Rendell (1993); Donoho and Rendell (1995). The instance-based Relief fea-

ture selection method is due to Kira and Rendell (1992) and extended by Robnik-

Sikonja and Kononenko (2003). The distinction between filter approaches to fea-

ture selection – which evaluate features on their individual merits – and wrapper

approaches, which evaluate sets of features, is originally due to Kohavi and John

(1997). Hall (1999) proposes a filter approach called correlation-based feature

selection that aims at combining the best of both worlds. Guyon and Elisseeff

(2003) give an excellent introduction to feature selection.

t Finally, we looked at feature construction and selection from a linear algebra per-

spective. Matrix decomposition and factorisation is an actively researched tech-

nique that was instrumental in winning a recent film recommendation challenge

worth $1 million (Koren et al., 2009). Decomposition techniques employing ad-

ditional constraints include non-negative matrix decomposition (Lee et al., 1999).
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Boolean matrix decomposition is studied by Miettinen (2009). Mahoney and

Drineas (2009) describe a matrix decomposition technique that uses actual columns

and rows of the data matrix to preserve sparsity (unlike SVD which produces

dense matrices even if the original matrix is sparse). Latent semantic index-

ing and a probabilistic extension is described by Hofmann (1999). Ding and He

(2004) discuss the relationship between K -means clustering and principal com-

ponent analysis.

o
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performance on a particular data set. It follows that we can only hope to achieve useful

meta-learning over non-uniform distributions of learning problems.

11.4 Model ensembles: Summary and further reading

In this short chapter we have discussed some of the fundamental ideas underlying en-

semble methods. What all ensemble methods have in common is that they construct

several base models from adapted versions of the training data, on top of which some

technique is employed to combine the predictions or scores from the base models into

a single prediction of the ensemble. We focused on bagging and boosting as two of the

most commonly used ensemble methods. A good introduction to model ensembles is

given by Brown (2010). The standard reference on classifier combination is Kuncheva

(2004) and a more recent overview is given by Zhou (2012).

t In Section 11.1 we discussed bagging and random forests. Bagging trains di-

verse models from samples of the training data, and was introduced by Breiman

(1996a). Random forests, usually attributed to Breiman (2001), combine bagged

decision trees with random subspaces; similar ideas were developed by Ho (1995)

and Amit and Geman (1997). These techniques are particularly useful to reduce

the variance of low-bias models such as tree models.

t Boosting was discussed in Section 11.2. The key idea is to train diverse models by

increasing the weight of previously misclassified examples. This helps to reduce

the bias of otherwise stable learners such as linear classifiers or decision stumps.

An accessible overview is given by Schapire (2003). Kearns and Valiant (1989,

1994) posed the question whether a weak learning algorithm that performs just

slightly better than random guessing can be boosted into an arbitrarily accu-

rate strong learning algorithm. Schapire (1990) introduced a theoretical form

of boosting to show the equivalence of weak and strong learnability. The Ad-

aBoost algorithm on which Algorithm 11.3 is based was introduced by Freund

and Schapire (1997). Schapire and Singer (1999) give multi-class and multi-label

extensions of AdaBoost. A ranking version of AdaBoost was proposed by Freund

et al. (2003). The boosted rule learning approach that can handle classifiers that

may abstain was inspired by Slipper (Cohen and Singer, 1999), a boosted version

of Ripper (Cohen, 1995).

t In Section 11.3 we discussed bagging and boosting in terms of bias and vari-

ance. Schapire, Freund, Bartlett and Lee (1998) provide a detailed theoretical

and experimental analysis of boosting in terms of improving the margin distri-

bution. I also mentioned some other ensemble methods that train a meta-model

for combining the base models. Stacking employs a linear meta-model and was
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introduced by Wolpert (1992) for classification and extended by Breiman (1996b)

for regression. Meta-decision trees were introduced by Todorovski and Dzeroski

(2003).

t We also briefly discussed meta-learning as a technique for learning about the

performance of learning algorithms. The field originated from an early empirical

study documented by Michie et al. (1994). Recent references are Brazdil et al.

(2009, 2010). Unpruned and unpruned decision trees were used to obtain data

set characteristics by Peng et al. (2002). The idea of training simple models to

obtain further data characteristics is known as landmarking (Pfahringer et al.,

2000).

o
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94 CHAPTER 6. PREDICTIVE MULTI-CLASS SUBGROUP DISCOVERY

CD
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1 2 3 4 5

Figure 6.6: Post-hoc test (significance reported) comparing the average rank of
CN2-MSD and other rule learners with respect to the number of subgroups/rules.

CN2-MSD CN2 CN2-SD PART Ridor
1 12.70(1.00) 135.00(5.00) 23.50(3.00) 58.60(4.00) 14.00(2.00)
2 14.30(2.00) 151.30(5.00) 14.10(1.00) 82.70(3.00) 112.30(4.00)
3 44.00(3.00) 365.40(5.00) 12.30(1.00) 261.00(4.00) 43.00(2.00)
4 24.40(1.00) 979.00(3.00) 25.40(2.00) 1187.10(4.00) 1227.00(5.00)
5 8.20(1.00) 46.80(5.00) 10.70(2.00) 12.70(3.00) 14.90(4.00)
6 6.00(1.00) 71.70(5.00) 24.20(3.00) 19.70(2.00) 38.40(4.00)
7 3.90(2.00) 31.50(5.00) 6.70(4.00) 6.20(3.00) 3.30(1.00)
8 3.00(1.00) 258.00(5.00) 21.60(2.00) 119.70(4.00) 33.70(3.00)
9 29.10(2.00) 1443.40(5.00) 23.90(1.00) 760.40(4.00) 161.20(3.00)
10 8.70(1.00) 261.60(4.00) 27.50(2.00) 200.40(3.00) 2733.60(5.00)
Average 15.43(1.50) 374.37(4.70) 18.99(2.10) 270.85(3.40) 438.14(3.30)

Table 6.6: Comparing the number of CN2-MSD’s subgroups against the number of
rules produced by other rule learners (ranks in brackets) over 10 UCI data sets.

CD

REPTree
Pruned-RankFree-MSD

RankFree-MSD
J48

1 2 3 4

Figure 6.7: Post-hoc test (significance reported) comparing the average rank of
RankFree-MSD and Pruned-RankFree-MSD and other tree learners with respect
to the tree size.
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Figure 7.11: Post-hoc test comparing the average rank of accuracies of MRL, MRSU ,
MRSI and CN2 methods over the multi-class relational data sets.
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Figure 7.12: Post-hoc test comparing the average rank of AUCs of MRL, MRSU , MRSI
and CN2 methods over the two-class relational data sets.
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Figure 7.13: Post-hoc test (no significance reported) comparing the average rank of
accuracies of MRL, MRSU , MRSI and CN2 methods over the two-class relational data
sets.

Figure 12.1. (top) Critical difference diagram for the pairwise Nemenyi test. Average ranks for

each algorithm are plotted on the real axis. The critical difference is shown as a bar above the

figure, and any group of consecutively ranked algorithms such that the outermost ones are less

than the critical difference apart are connected by a horizontal thick line. The diagram shows,

e.g., that the performance of the top ranked algorithm is significantly better than the bottom

three. (bottom) Critical difference diagram for the Bonferroni–Dunn test with CN2 as control.

The critical differences are now drawn symmetrically around the average rank of the control.

The top ranked algorithm is significantly better than the control, and the bottom ranked one is

significantly worse. (Figures courtesy of Tarek Abudawood (2011)).

A variant of the Nemenyi test called the Bonferroni–Dunn test can be applied when

we perform pairwise tests only against a control algorithm. The calculation of the crit-

ical difference is the same, except qÆ is adjusted to reflect the fact that we make k °1

pairwise comparisons rather than k(k °1)/2. For example, for Æ = 0.05 and k = 3 we

have qÆ = 2.241, which is slightly lower than the value used for the Nemenyi test, lead-

ing to a tighter critical difference. Figure 12.1 (bottom) shows a graphical representa-

tion of the Bonferroni–Dunn post-hoc test.

12.4 Machine learning experiments: Summary and further read-

ing

In this chapter we have taken a look at how we can use data to answer questions

about the performance of models and learning algorithms. A ‘machine learning ex-

perimenter’ needs to address three questions: (i) what to measure, (ii) how to measure

it, and (iii) how to interpret it. An excellent source – particularly for the last two ques-

tions – is Japkowicz and Shah (2011).
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t In order to decide what to measure, we first need to explicate our experimental

objective. We also need to consider the operating context: performance aspects

that might change when using the model. For example, the operating context

might be given by the class distribution, but we may have no prior knowledge

telling us that certain distributions are more likely than others. Example 12.1 on

p.345 demonstrated that in such a case average recall would be more appropriate

as a performance measure, even if the experimental objective is accuracy. We

also looked at the difference between a precision–recall analysis which ignores

the true negatives, and a true/false positive rate analysis which takes them into

account; a fuller analysis is provided by Davis and Goadrich (2006). The relation

between accuracy as experimental objective and AUC as performance measure

is studied by Hernández-Orallo et al. (2011).

t Once we decided what to measure, we need to establish a measuring protocol.

The most common approach is k-fold cross-validation, which divides the data

into k folds, repeatedly trains on k °1 of those and tests on the remaining one.

It is of paramount importance that there be no information leak between the

training data used to learn the model and the test data used to evaluate it. A

common mistake is to use cross-validation to find the best setting of one or more

parameters of a learning algorithm, say the complexity parameter of a support

vector machine. This is methodologically wrong as parameter tuning should be

carried out as part of the training process, without any access to the test data.

A methodologically sound option is to use internal cross-validation by setting

aside a validation fold in each cross-validation run for parameter tuning. Exper-

imental studies regarding cross-validation are carried out by Dietterich (1998)

and Bouckaert and Frank (2004): the former recommends five times two-fold

cross-validation and the latter ten times ten-fold. ROC curves can be drawn in

cross-validation as each instance appears in a test fold exactly once, and so we

can collect the scores on all test folds. Fawcett (2006) considers alternatives in-

cluding horizontal and vertical averaging.

t In the context of interpreting experimental results we looked at confidence inter-

vals and significance tests. Confidence intervals have a clear statistical interpre-

tation: they quantify the likelihood of a measurement falling in a particular inter-

val, assuming a particular true value. Significance tests extend this to reasoning

about a particular null hypothesis, such as ‘these learning algorithms do not per-

form differently on these data sets’. Significance tests are designed for particular

protocols: the t-test can be used for evaluating two learning algorithms on two

data sets, Wilcoxon’s signed-rank test is applicable for comparing two algorithms

over multiple data sets, and Friedman’s test (or analysis of variance) compares

multiple algorithms over multiple data sets. An excellent discussion of these and
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related tests is provided by Demšar (2006).

t It should be mentioned that there is much discussion on the use of significance

tests in machine learning, and on the wider issue regarding machine learning

as an experimental science. The importance of experiments in machine learn-

ing was stressed early on by Pat Langley in two influential papers (Langley, 1988;

Kibler and Langley, 1988); however, more recently he expressed criticism at the

way experimental methodology in machine learning has become rather inflex-

ible (Langley, 2011). Other authors critical of current practice include Drum-

mond (2006) and Demšar (2008).

o
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A
ND SO WE HAVE come to the end of our journey through the ‘making sense of data’ land-

scape. We have seen how machine learning can build models from features for solving

tasks involving data. We have seen how models can be predictive or descriptive; learn-

ing can be supervised or unsupervised; and models can be logical, geometric, prob-

abilistic or ensembles of such models. Now that I have equipped you with the basic

concepts to understand the literature, there is a whole world out there for you to ex-

plore. So it is only natural for me to leave you with a few pointers to areas you may

want to learn about next.

One thing that we have often assumed in the book is that the data comes in a form

suitable for the task at hand. For example, if the task is to label e-mails we conveniently

learn a classifier from data in the form of labelled e-mails. For tasks such as class prob-

ability estimation I introduced the output space (for the model) as separate from the

label space (for the data) because the model outputs (class probability estimates) are

not directly observable in the data and have to be reconstructed. An area where the

distinction between data and model output is much more pronounced is reinforce-

ment learning. Imagine you want to learn how to be a good chess player. This could

be viewed as a classification task, but then you require a teacher to score every move.

What happens in practical situations is that every now and then you receive a reward

or a punishment – e.g., winning the game, or losing one of your pieces. The challenge is

then to assign credit or blame to individual moves that led to such rewards or punish-

ments being incurred. Reinforcement learning is a principled way to learn policies for

deciding which action to take in which situation or state. This is currently one of the

360
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most active subfields of machine learning. The standard reference is Sutton and Barto

(1998), and you should have no trouble finding more recent workshop proceedings or

journal special issues.

There are many other tasks that require us to relax some of our assumptions. For

example, in multi-class classification we assume that classes are mutually exclusive. In

multi-label classification we drop that assumption, so that an instance can be labelled

with an arbitrary subset of labels. This is natural, e.g., when tagging online material

such as blog posts. The dependence between labels is an additional source of informa-

tion: for example, knowing that the tag ‘machine learning’ applies makes the tag ‘rein-

forcement learning’ more likely. Multi-label learning aims to exploit this information

by learning the dependence between the labels as well as the mapping between the

features and each individual label. For relevant work in the area see, e.g., Tsoumakas

et al. (2012). A related area is preference learning, where the goal is to learn instance-

dependent preferences between class labels (Fürnkranz and Hüllermeier, 2010). In-

creasing the complexity of the model outputs even further, we arrive at the general

area of structured output prediction (Bakir et al., 2007).

Going back to multi-label learning, although each label establishes a separate bi-

nary classification task, the goal is to avoid learning completely separate models for

each task. This is, in fact, a special case of what is called multi-task learning. For ex-

ample, each task could be to predict a separate real-valued target variable on the same

instance space, and the learner is aiming to exploit, say, correlations between the tar-

get variables. Closely related to this is the area of transfer learning, which studies the

transfer of models between tasks. A relevant reference for both areas is Silver and Ben-

nett (2008).

Another assumption that deserves closer scrutiny is the availability of data in a sin-

gle batch. In online learning, also called incremental learning, the model needs to be

updated each time a new data point arrives. One application of this is in the area of

sequence prediction (Cesa-Bianchi and Lugosi, 2006). With the increase in sensor data

this setting is rapidly gaining importance, as can be witnessed from the growing area

of learning from data streams (Gama and Gaber, 2007). Sometimes it is convenient to

give the learner a more active role in data acquisition, for example by issuing queries

for examples to be labelled by the teacher. Active learning studies exactly this setting

(Settles, 2011).

Ultimately, machine learning is – and, in all likelihood, will remain – a research area

at the nexus of two distinct developments. On the one hand, it is widely recognised that

the ability for learning and self-training is necessary for achieving machine intelligence

in any form. An area in machine learning that has this quest at heart is deep learning,

which aims at employing hierarchies of autonomously constructed features (Bengio,

2009). On the other hand, machine learning is an indispensable tool for dealing with
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the data deluge. Building machine learning models is an essential step in the data

mining process, which poses specific challenges such as being able to deal with ‘big

data’ and cloud computing platforms. I hope that this book has kindled your interest

in one of these exciting developments.

o



Important points to remember

Machine learning is the systematic study of algorithms and systems that im-

prove their knowledge or performance with experience. 3

Tasks are addressed by models, whereas learning problems are solved by learn-

ing algorithms that produce models. 12

Machine learning is concerned with using the right features to build the right

models that achieve the right tasks. 12

Models lend the machine learning field diversity, but tasks and features give it

unity. 13

Use likelihoods if you want to ignore the prior distribution or assume it uniform,

and posterior probabilities otherwise. 28

Everything should be made as simple as possible, but not simpler. 30

In a coverage plot, classifiers with the same accuracy are connected by line seg-

ments with slope 1. 59

In a normalised coverage plot, line segments with slope 1 connect classifiers

with the same average recall. 60

The area under the ROC curve is the ranking accuracy. 67

Grouping model ROC curves have as many line segments as there are instance

space segments in the model; grading models have one line segment for each

example in the data set. 69
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By decreasing a model’s refinement we sometimes achieve better ranking per-

formance. 69

Concavities in ROC curves can be remedied by combining segments through

tied scores. 77

To avoid overfitting, the number of parameters estimated from the data must be

considerably less than the number of data points. 93

In descriptive learning the task and learning problem coincide. 95

The LGG is the most conservative generalisation that we can learn from the data. 108

Every concept between the least general one and one of the most general ones

is also a possible hypothesis. 112

An upward path through the hypothesis space corresponds to a coverage curve. 114

Decision trees are strictly more expressive than conjunctive concepts. 131

One way to avoid overfitting and encourage learning is to deliberately choose a

restrictive hypothesis language. 131

The ranking obtained from the empirical probabilities in the leaves of a decision

tree yields a convex ROC curve on the training data. 138

Entropy and Gini index are sensitive to fluctuations in the class distribution,p
Gini isn’t. 147

Rule lists are similar to decision trees in that the empirical probabilities associ-

ated with each rule yield convex ROC and coverage curves on the training

data. 166

(XTX)°1 acts as a transformation that decorrelates, centres and normalises the

features. 202

Assuming uncorrelated features effectively decomposes a multivariate regres-

sion problem into d univariate problems. 203

A general way of constructing a linear classifier with decision boundary w ·x = t

is by constructing w as M°1(n©µ©°n™µ™). 207

In the dual, instance-based view of linear classification we are learning instance

weights Æi rather than feature weights w j . 210

A minimal-complexity soft margin classifier summarises the classes by their class

means in a way very similar to the basic linear classifier. 219

The basic linear classifier can be interpreted from a distance-based perspective

as constructing exemplars that minimise squared Euclidean distance within

each class, and then applying a nearest-exemplar decision rule. 239
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Probabilities do not have to be interpreted as estimates of relative frequencies,

but can carry the more general meaning of (possibly subjective) degrees of

belief. 265

For uncorrelated, unit-variance Gaussian features, the basic linear classifier is

Bayes-optimal. 271

The negative logarithm of the Gaussian likelihood can be interpreted as a squared

distance. 271

A good probabilistic treatment of a machine learning problem achieves a bal-

ance between solid theoretical foundations and the pragmatism required to

obtain a workable solution. 273

An often overlooked consequence of having uncalibrated probability estimates

such as those produced by naive Bayes is that both the ML and MAP decision

rules become inadequate. 277

Tree models ignore the scale of quantitative features, treating them as ordinal. 305

Fitting data to a fixed linear decision boundary in log-odds space by means of

feature calibration can be understood as training a naive Bayes model. 318

Low-bias models tend to have high variance, and vice versa. 338

Bagging is predominantly a variance-reduction technique, while boosting is pri-

marily a bias-reduction technique. 339

Machine learning experiments pose questions about models that we try to an-

swer by means of measurements on data. 343

The combination of precision and recall, and therefore the F-measure, is insen-

sitive to the number of true negatives. 346

Confidence intervals are statements about estimates rather than statements about

the true value of the evaluation measure. 352
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as a weighted average

Example 2.1, 56

expected

Example 12.3, 347

Example 12.1, 346

macro-averaged, 60

ranking, see ranking accuracy

active learning, 122, 361

adjacent violators, 77

affine transformation, 195

agglomerative merging, 312

AggloMerge(S, f ,Q)

Algorithm 10.2, 312

aggregation

in structured features, 306

Aleph, see ILP systems

analysis of variance, 355

anti-unification, 123

Apriori, see association rule algorithms

AQ, see rule learning systems

arithmetic mean

minimises squared Euclidean dis-

tance, 291

Theorem 8.1, 238

association rule, 15, 184

association rule algorithms

Apriori, 193

Warmr, 193

association rule discovery

Example 3.12, 102

AssociationRules(D, f0,c0)

Algorithm 6.7, 185

at least as general as, 105

attribute, see feature

AUC, 67

multi-class

Example 3.5, 88

average recall, see recall, average, 101

backtracking search, 133

bag of words, 41

bagging, 156, 331–333

Bagging(D,T,A )

Algorithm 11.1, 332

383
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basic linear classifier, 21, 207–228, 238,

241, 242, 269, 317, 321, 332, 334–

336, 339, 364

Bayes-optimality, 271

kernel trick, 43

Bayes’ rule, 27

Bayes-optimal, 29, 30, 265

basic linear classifier, 271

beam search, 170

Bernoulli distribution, 148, 274

multivariate, 273

Bernoulli trial, 148, 273

Bernoulli, Jacob, 45, 274

BestSplit-Class(D,F )

Algorithm 5.2, 137

bias, 94

bias–variance dilemma, 93, 338

big data, 362

bigram, 322

bin, 309

binomial distribution, 274

bit vector, 273

Bonferroni–Dunn test, 357

boosting, 63, 334–338

weight updates

Example 11.1, 334

Boosting(D,T,A )

Algorithm 11.3, 335

bootstrap sample, 331

breadth-first search, 183

Brier score, 74

C4.5, see tree learning systems

calibrating classifier scores, 223, 316

calibration, 220

isotonic, 78, 223, 286, 318

logistic, 286, 316

loss, 76

map, 78

CART, see tree learning systems

Cartesian product, 51

categorical distribution, 274

CD, see critical difference

central limit theorem, 220, 350

central moment, 303

centre around zero, 24, 198, 200, 203,

324

centre of mass, 24

centroid, 97, 238

characteristic function, 51

Chebyshev distance, 234

Chebyshev’s inequality, 301

Chervonenkis, Alexey, 125

chicken-and-egg problem, 287

cityblock distance, see Manhattan dis-

tance

class

imbalance

Example 2.4, 67

label, 52

ratio, 57, 58, 61, 62, 67, 70, 71, 142,

143, 147, 221

class probability estimation, 360

class probability estimator, 72

squared error

Example 2.6, 74

tree, 141

classification

binary, 52

multi-class, 14, 82

classifier, 52

clause, 105

cloud computing, 362

clustering, 14

agglomerative, 255, 310

descriptive, 18

evaluation

Example 3.10, 99

predictive, 18
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representation

Example 3.9, 98

stationary point, 249

Example 8.5, 249

clustering tree, 253

using a dissimilarity matrix

Example 5.5, 153

using Euclidean distance

Example 5.6, 155

CN2, see rule learning systems

CNF, see conjunctive normal form

comparable, 51

complement, 178

component, 266

computational learning theory, 124

concavity, 76

concept, 157

closed, 117, 183

complete, 113

conjunctive, 106

Example 4.1, 106

consistent, 113

concept learning, 52, 104

negative examples

Example 4.2, 110

conditional independence, 281

conditional likelihood, 283

conditional random field, 296

confidence, 57, 184

confidence interval, 351

Example 12.5, 352

confusion matrix, 53

conjugate prior, 265

conjunction ^ , 34, 105

conjunctive normal form, 105, 119

conjunctively separable, 115

constructive induction, 131

contingency table, 53

continuous feature, see feature, quanti-

tative

convex, 213, 241

hull, 78

lower, 309

loss function, 63

ROC curve, 76, 138

set, 113, 183

correlation, 151

correlation coefficient, 45, 267, 323

cosine similarity, 259

cost ratio, 71, 142

count vector, 275

counter-example, 120

covariance, 45, 198

covariance matrix, 200, 202, 204, 237,

267, 269, 270

coverage counts, 86

as score

Example 3.4, 87

coverage curve, 65

coverage plot, 58

covering algorithm, 163

weighted, see weighted covering

covers, 105, 182

critical difference, 356

critical value, 354

cross-validation, 19, 349

Example 12.4, 350

internal, 358

stratified, 350

curse of dimensionality, 243

d-prime, 316

data mining, 182, 362

data set characteristics, 340

data streams, 361

De Morgan laws, 105, 131

decile, 301

decision boundary, 4, 14

decision list, 34, 192
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decision rule, 26

decision stump, 339

decision threshold

tuning

Example 2.5, 71

decision tree, 33, 53, 101, 314

decoding, 83

loss-based, 85

deduction, 20

deep learning, 361

default rule, 35, 161

degree of freedom

in t-distribution, 353

in contingency table, 58

dendrogram, 254

Definition 8.4, 254

descriptive clustering, 96, 245

descriptive model, 17

dimensionality reduction, 326

Dirichlet prior, 75

discretisation, 155

agglomerative, 310

agglomerative merging

Example 10.7, 313

bottom–up, 310

divisive, 310

equal-frequency, 309

equal-width, 310

recursive partitioning

Example 10.6, 311

top–down, 310

disjunction _ , 34, 105

disjunctive normal form, 105

dissimilarity, 96, 152

cluster, 152

split, 152

distance, 23

elliptical

Example 8.1, 237

Euclidean, 23, 305

Manhattan, 25

distance metric, 235, 305

Definition 8.2, 236

distance weighting, 244

divide-and-conquer, 35, 133, 138, 161

DKM, 156

DNF, see disjunctive normal form

dominate, 59

DualPerceptron(D)

Algorithm 7.2, 209

Eddington, Arthur, 343

edit distance, 235

eigendecomposition, 325

Einstein, Albert, 30, 343

EM, see Expectation-Maximisation

empirical probability, 75, 133, 135, 138

entropy, 159, 294

as an impurity measure, see impu-

rity measure, entropy

equivalence class, 51

equivalence oracle, 120

equivalence relation, 51

error rate, 54, 57

error-correcting output codes, 102

estimate, 45

Euclidean distance, 234

European Conference on Machine Learn-

ing, 2

European Conference on Principles and

Practice of Knowledge Discov-

ery in Databases, 2

evaluation measures, 344

for classifiers, 57

example, 50

exceptional model mining, 103

excess kurtosis, see kurtosis

exemplar, 25, 97, 132, 238

Expectation-Maximisation, 97, 289, 322
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expected value, 45, 267

experiment, 343

experimental objective, 344

explanation, 35

explanatory variable, see feature

exponential loss, 63, 337

extension, 105

F-measure, 99, 300

insensitivity to true negatives, 346

false alarm rate, 55, 57

false negative, 55

false negative rate, 55, 57

false positive, 55

false positive rate, 55, 57

feature, 13, 50, 262

binarisation, 307

Boolean, 304

calibration, 314

categorical, 155, 304

construction, 41, 50

decorrelation, 202, 237, 270, 271

discretisation, 42, 309

discretisation, supervised, 310

discretisation, unsupervised, 309

domain, 39, 50

list, 33

normalisation, 202, 237, 270, 271,

314

ordinal, 233, 304

quantitative, 304

space, 225

structured, 306

Example 10.4, 306

thresholding, 308

thresholding, supervised, 309

thresholding, unsupervised, 308

transformation, 307

two uses of, 41

Example 1.8, 41

unordering, 307

feature calibration, 277

categorical

Example 10.8, 315

isotonic

Example 10.11, 321

Example 10.10, 320

logistic

Example 10.9, 318

feature selection, 243

backward elimination, 324

filter, 323

forward selection, 324

Relief, 323

wrapper, 324

feature tree, 32, 132, 155

Definition 5.1, 132

complete, 33

growing

Example 5.2, 139

labelling

Example 1.5, 33

first-order logic, 122

FOIL, see ILP systems

forecasting theory, 74

frequency, see support

FrequentItems(D, f0)

Algorithm 6.6, 184

Friedman test, 355

Example 12.8, 356

function estimator, 91

functor, 189

Gauss, Carl Friedrich, 102, 196

Gaussian distribution, 266

Gaussian kernel, 227

bandwidth, 227

Gaussian mixture model, 266, 289

bivariate

Example 9.3, 269
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relation to K -means, 292

univariate

Example 9.2, 269

general, 46

generalised linear model, 296

generality ordering, 105

generative model, 29

geometric median, 238

Gini coefficient, 134

Gini index, 159

as an impurity measure, see impu-

rity measure, Gini index

Gini, Corrado, 134

glb, see greatest lower bound

Golem, see ILP systems

Gosset, William Sealy, 353

gradient, 213, 238

grading model, 52, 92

Gram matrix, 210, 214, 325

greatest lower bound, 108

greedy algorithm, 133

grouping model, 52, 92

GrowTree(D,F ), 152

Algorithm 5.1, 132

Guinness, 353

HAC(D,L)

Algorithm 8.4, 255

Hamming distance, 84, 235, 305

harmonic mean, 99

Hernández-Orallo, José, xvi

hidden variable, 16, 288

hierarchical agglomerative clustering, 314

hinge loss, 63, 217

histogram, 302

Example 10.2, 303

homogeneous coordinates, 4, 24, 195,

201

Horn clause, 105, 119, 189

Horn theory, 119

learning

Example 4.5, 122

Horn(Mb,Eq)

Algorithm 4.5, 120

Horn, Alfred, 105

Hume, David, 20

hyperplane, 21

hypothesis space, 106, 186

ID3, see tree learning systems

ILP, see inductive logic programming

ILP systems

Aleph, 193

FOIL, 193

Golem, 193

Progol, 35, 193

implication ! , 105

impurity

Example 5.1, 136

relative, 145

impurity measure, 158p
Gini, 134, 145, 147, 156, 337

entropy, 134, 135, 136, 144, 147, 294

Gini index, 134, 135, 136, 144, 147

as variance, 148

minority class, 134, 135, 159

imputation, 322

incomparable, 51

independent variable, see feature

indicator function, 54

induction, 20

problem of, xvii, 20

inductive bias, 131

inductive logic programming, 189, 307

information content, 293

Example 9.7, 293

information gain, 136, 310, 323

information retrieval, 99, 300, 326, 346

input space, 225

instance, 49
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labelled, 50

instance space, 21, 39, 40, 49

segment, 32, 51, 104, 132

intercept, 195, 198

internal disjunction, 110, 162

Example 4.3, 112

interquartile range, 301, 314

isometricp
Gini, 145

accuracy, 61, 69, 77, 116

average recall, 60, 72

entropy, 145

Gini index, 145

impurity, 159

precision, 167

precision (Laplace-corrected), 170

splitting criteria, 145

item set, 182

closed, 183

frequent, 182

Jaccard coefficient, 15

jackknife, 349

K -means, 25, 96, 97, 247, 259, 289, 310

problem, 246, 247

relation to Gaussian mixture model,

292

K -medoids, 250, 310

k-nearest neighbour, 243

Karush–Kuhn–Tucker conditions, 213

kernel, 43, 323

quadratic

Example 7.8, 225

kernel perceptron, 226

kernel trick, 43

Example 1.9, 44

Kernel-KMeans(D,K )

Algorithm 8.5, 259

KernelPerceptron(D,)

Algorithm 7.4, 226

Kinect motion sensing device, 129, 155

KKT, see Karush–Kuhn–Tucker conditions

KMeans(D,K )

Algorithm 8.1, 248

KMedoids(D,K ,Dis)

Algorithm 8.2, 250

kurtosis, 303

L0 norm, see 0-norm

label space, 50, 360

Lagrange multiplier, 213

landmarking, 342

Langley, Pat, 359

Laplace correction, 75, 138, 141, 147, 170,

265, 274, 279, 286

lasso, 205

latent semantic indexing, 327

latent variable, see hidden variable

lattice, 108, 182, 186

law of large numbers, 45

learnability, 124

learning from entailment, 128

learning from interpretations, 128

learning model, 124

learning rate, 207

LearnRule(D), 169, 190

Algorithm 6.2, 164

LearnRuleForClass(D,Ci )

Algorithm 6.4, 171

LearnRuleList(D), 169, 190

Algorithm 6.1, 163

LearnRuleSet(D)

Algorithm 6.3, 171

least general generalisation, 108, 112, 115–

117, 131

least upper bound, 108

least-squares classifier, 206, 210

univariate

Example 7.4, 206
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least-squares method, 196

ordinary, 199

total, 199, 273

least-squares solution to a linear regres-

sion problem, 272

leave-one-out, 349

Lebowski, Jeffrey, 16

level-wise search, 183

Levenshtein distance, 235

LGG, see least general generalisation

LGG-Conj(x, y)

Algorithm 4.2, 110

LGG-Conj-ID(x, y)

Algorithm 4.3, 112

LGG-Set(D)

Algorithm 4.1, 108

lift, 186

likelihood function, 27, 305

likelihood ratio, 28

linear

approximation, 195

combination, 195

function, 195

model, 194

transformation, 195

linear classifier, 5, 21, 38, 40, 43, 81, 82,

207–223, 263, 282, 314, 333–340

Example 1, 3

coverage curve, 67

general form, 207, 364

geometric interpretation, 220

logistic calibration

Example 7.7, 223

margin, 22

VC-dimension, 126

linear discriminants, 21

linear regression, 92, 151

bivariate

Example 7.3, 203

univariate

Example 7.1, 198

linear, piecewise, 195

linearly separable, 207

linkage function, 254

Definition 8.5, 254

Example 8.7, 256

monotonicity, 257

literal, 105

Lloyd’s algorithm, 247

local variables, 189, 306

log-likelihood, 271

log-linear models, 223

log-odds space, 277, 317

logistic function, 221

logistic regression, 223, 282

univariate

Example 9.6, 285

loss function, 62, 93

loss-based decoding

Example 3.3, 86

Lp norm, see p-norm

LSA, see latent semantic indexing

lub, see least upper bound

m-estimate, 75, 141, 147, 279

Mach, Ernst, 30

machine intelligence, 361

machine learning

definition of, 3

univariate, 52

Mahalanobis distance, 237, 271

majority class, 33, 35, 53, 56

Manhattan distance, 234

manifold, 243

MAP, see maximum a posteriori

margin

of a classifer, 62

of a decision boundary, 211

of a linear classifier, 22
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of an example, 62, 211, 339

margin error, 216

marginal, 54, 186

marginal likelihood, 29

Example 1.4, 30

market basket analysis, 101

matrix

diagonal, 202

inverse, 267

rank, 326

matrix completion, 327

matrix decomposition, 17, 97, 324–327

Boolean, 327

non-negative, 328

with constraints, 326

maximum a posteriori, 28, 263

maximum likelihood, 28

maximum-likelihood estimation, 271, 287

in linear regression, 199

maximum-margin classifier

Example 7.5, 216

soft margin

Example 7.6, 219

mean, 267, 299

arithmetic, 300

geometric, 300

harmonic, 300

mean squared error, 74

median, 267, 299

medoid, 153, 238

membership oracle, 120

meta-model, 339

MGConsistent(C , N )

Algorithm 4.4, 116

midrange point, 301

minimum description length

Definition 9.1, 294

Minkowski distance, 234

Definition 8.1, 234

minority class

as an impurity measure, see impu-

rity measure, minority class

missing values, 322

Example 1.2, 27

mixture model, 266

ML, see maximum likelihood

MLM data set

Example 1.7, 40

clustering

Example 8.4, 249

hierarchical clustering

Example 8.6, 254

mode, 267, 299

model, 13, 50

declarative, 35

geometric, 21

grading, 36

grouping, 36

logical, 32

parametric, 195

probabilistic, 25

univariate, 40

model ensemble, 330

model selection, 265

model tree, 151

monotonic, 182, 305

more general than, 105

MSE, see mean squared error

multi-class classifier

performance

Example 3.1, 82

multi-class probabilities

Example 3.7, 91

multi-class scores

from decision tree, 86

from naive Bayes, 86

reweighting

Example 3.6, 90
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multi-label classification, 361

multi-task learning, 361

multinomial distribution, 274

multivariate linear regression, 277

multivariate naive Bayes

decomposition into univariate mod-

els, 32

multivariate normal distribution, 289

multivariate regression

decomposition into univariate re-

gression, 203, 364

n-gram, 322

naive Bayes, 30, 33, 203, 278, 315, 318,

322

assumption, 275

categorical features, 305

diagonal covariance matrix, 281

factorisation, 277, 281

ignores feature interaction, 44

linear in log-odds space, 277

multi-class scores, 86

prediction

Example 9.4, 276

recalibrated decision threshold, 277,

365

Scottish classifier, 32, 281

skewed probabilities, 277

training

Example 9.5, 280

variations, 280

nearest-neighbour classifier, 23, 242

nearest-neighbour retrieval, 243

negation ¬, 105

negative recall, 57

neighbour, 238

Nemenyi test, 356

neural network, 207

Newton, Isaac, 30

no free lunch theorem, 20, 340

noise, 50

instance, 50

label, 50

nominal feature, see feature, categorical

normal distribution, 220, 266, 305

multivariate, 267

multivariate standard, 267

standard, 267, 270

normal vector, 195

normalisation, 198

row, 90

null hypothesis, 352

objective function, 63, 213

Occam’s razor, 30

one-versus-one, 83

one-versus-rest, 83

online learning, 361

operating condition, 72

operating context, 345

optimisation

constrained, 212, 213

dual, 213, 214

multi-criterion, 59

primal, 213

quadratic, 212, 213

Opus, see rule learning systems

ordinal feature, see feature, ordinal

ordinal, 299

outlier, 198, 238, 302

Example 7.2, 199

output code, 83

output space, 50, 360

overfitting, 19, 33, 50, 91, 93, 97, 131,

151, 196, 210, 285, 323

Example 2, 6

p-norm, 234

p-value, 352
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PAC, see probably approximately correct

paired t-test, 353

Example 12.6, 353

PAM, see partitioning around medoids

PAM(D,K ,Dis)

Algorithm 8.3, 251

Pareto front, 59

partial order, 51

partition, 51

partition matrix, 97

partitioning around medoids, 250, 310

PCA, see principal component analysis

Pearson, Karl, 299

percentile, 301

Example 10.1, 302

percentile plot, 301

perceptron, 207, 210

online, 208

Perceptron(D,¥)

Algorithm 7.1, 208

PerceptronRegression(D,T )

Algorithm 7.3, 211

piecewise linear, see linear, piecewise

population mean, 45

post-hoc test, 356

post-processing, 186

posterior odds, 28

Example 1.3, 29

posterior probability, 26, 262

powerset, 51

Príncipe, 343

precision, 57, 99, 167, 186, 300

Laplace-corrected, 170

predicates, see first-order logic

predicted positive rate, 347

predictive clustering, 96, 245, 289

predictive model, 17

predictor variable, see feature

preference learning, 361

principal component analysis, 24, 243,

324

prior odds, 28

prior probability, 27

probabilistic model

discriminative, 262

generative, 262

probability distribution

cumulative, 302

right-skewed, 303

probability estimation tree, 73–76, 141,

147, 262, 263, 265

probability smoothing, 75

probability space, 317

probably approximately correct, 124, 331

Progol, see ILP systems

projection, 219

Prolog, see query languages

propositional logic, 122

propositionalisation, 307

PruneTree(T,D)

Algorithm 5.3, 144

pruning, 33, 142

pruning set, 143

pseudo-counts, 75, 172, 274, 279

pseudo-metric, 236

pure, 133

purity, 35, 158

quantile, 301

quartile, 301

query, 306

query languages

Prolog, 189–191, 193, 306

SQL, 306

Rand index, 99

random forest, 129, 333, 339

random variable, 45

RandomForest(D,T,d)
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Algorithm 11.2, 333

range, 301

ranking, 64

Example 2.2, 64

accuracy

Example 2.3, 65

ranking accuracy, 64

ranking error, 64

ranking error rate, 64

recalibrated likelihood decision rule, 277

recall, 57, 58, 99, 300

average, 60, 178

receiver operating characteristic, 60

RecPart(S, f ,Q)

Algorithm 10.1, 311

recursive partitioning, 310

reduced-error pruning, 143, 147, 151

incremental, 192

refinement, 69

refinement loss, 76

regression, 14, 64

Example 3.8, 92

isotonic, 78

multivariate, 202

univariate, 196

regression coefficient, 198

regression tree

Example 5.4, 151

regressor, 91

regularisation, 204, 217, 294

reinforcement learning, 360

reject, 83

relation, 51

antisymmetric, 51

equivalence, see equivalence rela-

tion

reflexive, 51

symmetric, 51

total, 51

transitive, 51

residual, 93, 196

ridge regression, 205

Ripper, see rule learning systems

ROC curve, 67

ROC heaven, 69, 145

ROC plot, 60

Rocchio classifier, 241

rotation, 24

rule, 105

body, 157

head, 157

incomplete, 35

inconsistent, 35

overlap

Example 1.6, 35

rule learning systems

AQ, 192

CN2, 192, 357

Opus, 192

Ripper, 192, 341

Slipper, 341

Tertius, 193

rule list, 139, 157

Example 6.1, 159

as ranker

Example 6.2, 165

rule set, 157

Example 6.3, 167

as ranker

Example 6.4, 173

rule tree, 175

Example 6.5, 175

sample complexity, 124

sample covariance, 45

sample mean, 45

sample variance, 45

scale, 299

reciprocal, 300
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scaling, 24

uniform, 24

scaling matrix, 201

scatter, 97, 246

Definition 8.3, 246

reduction by partitioning

Example 8.3, 247

within-cluster, 97

scatter matrix, 200, 245, 325

between-cluster, 246

within-cluster, 246

scoring classifier, 61

Scottish classifier, see naive Bayes

SE, see squared error

search heuristic, 63

seed example, 170

segment, 36

semi-supervised learning, 18

sensitivity, 55, 57

separability

conjunctive

Example 4.4, 116

separate-and-conquer, 35, 161, 163

sequence prediction, 361

sequential minimal optimisation, 229

set, 51

cardinality, 51

complement, 51

difference, 51

disjoint, 51

intersection, 51

subset, 51

union, 51

Shannon, Claude, 294

shatter, 126

shattering a set of instances

Example 4.7, 126

shrinkage, 204

sigmoid, 221

signal detection theory, 60, 316

significance test, 352

silhouette, 252

similarity, 72

Example 1.1, 15

singular value decomposition, 324

skewness, 303

Example 10.3, 304

slack variable, 216, 294

Slipper, see rule learning systems

slope, 195

soft margin, 217

SpamAssassin, 1–14, 61, 72

sparse data, 22

sparsity, 205

specific, 46

specificity, 55, 57

split, 132

binary, 40

splitting criterion

cost-sensitivity

Example 5.3, 144

SQL, see query languages

squared error, 73

squared Euclidean distance, 238

stacking, 339

standard deviation, 301

statistic

of central tendency, 299

of dispersion, 299

shape, 299, 303

stop word, 280

stopping criterion, 163, 310

structured output prediction, 361

sub-additivity, 236

subgroup, 100, 178

evaluation

Example 6.6, 180

extension, 100
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subgroup discovery, 17

Example 3.11, 100

subspace sampling, 333

supervised learning, 14, 17, 46

support, 182

support vector, 211

support vector machine, 22, 63, 211, 305

complexity parameter, 217

SVD, see singular value decomposition

SVM, see support vector machine

t-distribution, 353

target variable, 25, 91, 262

task, 13

terms, see first-order logic

Tertius, see rule learning systems

test set, 19, 50

Texas Instruments TI-58 programmable

calculator, 228

text classification, 7, 11, 22

thresholding

Example 10.5, 309

total order, 51

training set, 14, 50

transaction, 182

transfer learning, 361

translation, 24

tree learning systems

C4.5, 156

CART, 156

ID3, 155

triangle inequality, 236

trigram, 322

true negative, 55

true negative rate, 55, 57

true positive, 55

true positive rate, 55, 57, 99

turning rankers into classifiers, 278

underfitting, 196

unification, 123

Example 4.6, 123

unigram, 322

universe of discourse, 51, 105

unstable, 204

unsupervised learning, 14, 17, 47

Vapnik, Vladimir, 125

variance, 24, 45, 94, 149, 198, 200, 301,

303

Gini index as, 148

VC-dimension, 125

linear classifier, 126

version space, 113

Definition 4.1, 113

Viagra, 7–44

vocabulary, 7

Voronoi diagram, 98

Voronoi tesselation, 241

voting

one-versus-one

Example 3.2, 85

Warmr, see association rule algorithms

weak learnability, 331

weighted covering, 181, 338

Example 6.7, 181

weighted relative accuracy, 179

WeightedCovering(D)

Algorithm 6.5, 182

Wilcoxon’s signed-rank test, 354

Example 12.7, 355

Wilcoxon-Mann-Whitney statistic, 80
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